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Abstract 

The reactivity of Networked Automation Systems 
(NAS) has direct influence on safety and quality aspects. 
It can be determined by a response time analysis, which 
itself can be calculated using probabilistic model check-
ing (PMC). The analysis of a NAS has to account for 
several coupled components, each of them exhibiting its 
own behavior. Consequently, in this article the influ-
ences of (1) the controller‘s execution behavior includ-
ing its network interface card (cyclic vs. interrupt based) 
and (2) the communication model (Producer-Consumer 
vs. Client-Server) on the response time behavior will be 
analyzed. For this purpose the systems are represented 
by abstract models using probabilistic timed automata. 
Probabilistic model checking is used to compare the 
reactivity of different possible combinations of the basic 
behaviors. 

 

1. Introduction 

Nowadays, control systems typically are realized as a 
superposition of several time driven processes (e.g. PLC, 
IEC 61131). In contrary thereto in embedded systems 
normally event driven (interrupt based) processes are 
used. The same is true for some modern control architec-
tures especially those in the distributed systems area 
(IEC 61499). However, particularly in the latter area, 
there are also mixed architecture as e.g. time driven 
implementations of IEC 61499 in IsaGraF.  

Designing a control system, not only the functional 
but also the temporal aspects must be considered. That’s 
because information not arriving within given time 
bounds mostly has the same consequences as lost infor-
mation. For this reason it is necessary to have a very 
precise knowledge of occurring delays.  

The use of Networked Automation Systems (NAS) 
instead of traditional, directly wired systems, leads to a 
situation which necessitates the consideration of a multi-
tude of effects. Due to those effects significant delays 
may occur. As the worst delays only occur with a very 
small probability, the use of worst-case-analytic-methods 
would direct to unwarranted high hardware require-

ments. Fortunately, it is sufficient for most applications 
to meet temporal boundaries most of the time, e.g. in 
99.9% of all cases.  

By determining the overall response time probability 
distribution instead of only the boundary values has the 
advantage that the result can be used for the analysis of 
quality aspects directly [1]. It can be shown, that not 
only the speed of the components, but also the wiring 
and the functional architecture do have crucial influence 
on the overall system’s reactivity.  

Consequently, the reactivity of different Networked 
Automation System’s architectures will be analyzed in 
this article. The thereby discussed systems have several 
input signals Ii, each of them with a possibly varying 
triggering probability. If an input signal got activated, 
the PLC has to execute a predefined action fi in which’s 
curse the output Oi (i.e. the input value of an actuator) 
will be changed. The corresponding analytical interest 
lies in the time necessary to activate the output Oi count-
ing from the triggering moment of the input signal Ii. 
This delay is called response time.  

To do so, not only the static system has to be dis-
cussed. The types of signals- and processes dealt with 
have to be considered too. While the input part usually is 
event driven, the process part shows periodically recur-
ring processes, as e.g. cyclic control algorithms.  

A lot of work has been done in the area of network 
analysis already, e.g. [2, 3, 4, 5]. However, only very 
few of them did address the whole control loop and most 
of them were focused on a specific bus protocol (as e.g. 
ModBus-TCP or CAN), whereas in this work the behav-
ior itself is used abstracted from the concrete implemen-
tation towards its principal behavior.   

In section 2 four possible architectures are introduced 
and the corresponding characteristics are discussed. In 
section 3 the structure of an example is introduced. 
Based on this structure section 4 explains the response 
time analysis. Section 5 gives the corresponding model-
ing aspects and section 6 the response time distributions, 
the reactivities and the characteristics of the four archi-
tectures introduced in section 2. The underlying analysis 
has been done, using probabilistic model checking 
(PMC, [6]). Section 7 finally comprises those results in 
short, while section 8 gives a summary and an outlook 
on future works. 
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2. Basic architectures 

The response time analysis is done for the four 
architectures shown in Table 1. Those four architectures 
result from the differentiation of event and time based 
behavior on the one hand and the consideration of the 
communication- as well as control-level on the other 
hand. The communication thereby is distinguished be-
tween a Client-Server-model (e.g. ModBus TCP) and a 
Producer-Consumer-model (e.g. CAN). Note that the 
Producer-Consumer-model is also known as Publish-
Subscriber-model. For the control the execution proce-
dure is decisive which may either be interrupt based (e.g. 
Microcontroller-based systems) or cycle based (e.g. 
Programmable Logic Controllers, PLCs). For simplicity 
in the following the term PLC is used for all controllers 
regardless of their execution model. 

Table 1. Basic behavior modes of control 
systems 

 Communication Control 

event driven Producer/Consumer Interrupt 

time driven Client/Server PLC-cycle 
 
While in the Client-Server-model the I/O-modules are 

requested cyclically – which results in considerable 
delays due to synchronization [7] – the Producer-
Consumer-model is event driven, i.e. messages will be 
sent as soon as they are generated, i.e. as soon as there is 
new information available to be sent. The same seems to 
be true for the Control-level, as in an interrupt based 
execution the information has to wait for processing 
only, if the controller is busy, i.e. still handling an infor-
mation that arrived before, while in the cyclic execution 
waiting delays occur in most cases. 

Besides this signal registration the result of the execu-
tion must be transferred to the corresponding actuator. 
Thereby it also can be distinguished between a cyclic 
and an event driven structure. While it makes less sense, 
to couple an event-based sensor’s value capturing with 
cyclic actuator activation, the reverse case is indeed 
interesting and suitable in the real world.  

Consequently the six architectures shown in Table 2 
are investigated. For those six, the response time behav-
ior of a reference example is analyzed in more detail in 
the following sections. 

Note: Obviously, there are some more combinations 
conceivable. For example different cases of synchroniza-
tion between PLC and PLC-I/O which would lead to-
wards a behavior in between the cases 1c and 2 or 2 and 
4i/c, respectively. Moreover, most realizations of D/A, 
A/D converters are based on cyclic processing. However, 
their cycle times normally are much faster than the 
smallest time resolution used in this paper and therefore 
are neglected. For an example of a system with cyclic 
behavior in the field-I/O, the network transmission and 

the PLC, it is referred to the multi-rate system discussed 
in [8]. A multi-rate system thereby is defined as a sys-
tem, including different sampling or cycle times. 

Table 2. Meaningful basic architectures of 
control systems 

 PLC Field-I/O PLC-I/O 
Case   Sensor Actuator 

     
1 c Cyclic on request Cyclic 
1 i Cyclic on request Cyclic Immediately 

     
2 Cyclic Producer-Consumer immediately 
     

3 interrupt Producer-Consumer immediately 
     

4 c interrupt on request cyclic 
4 i interrupt on request Cyclic immediately 

 

3. System Description 

For the comparative analysis a typical example from 
the area of Networked Automation Systems is used as 
shown in Figure 1. The parameters used are derived from 
real system parameters, but shall only be dealt in an 
academic way, in here. 

PLC PLC-I/O network

field-I/O 2
actuator 1

actuator 2

actuator m
…

further I/O-components

field-I/O 1

sensor 1

sensor 2

sensor n

…
 

Figure 1. Case Study for the comparative 
analysis. Note: It is possible but not nec-
essary to separate sensors and actuators.  

On the left hand side the behavior of the PLC is pre-
sented, which is given by a cycle time of (constant) 
10 ms in the cyclic case and a variable execution time in 
the event based case. 

If a sensor’s information arrives while the PLC is 
busy, this information has to wait until the PLC returns 
to its state „read inputs“. While this is mostly the case 
for the cycle based operation, in the event based one it 
only occurs if other sensors values have triggered a PLC-
execution just before. The execution sequence thereby 
generally contains one time slot each for reading the 
inputs and for writing the outputs. Both time slots are 
assumed to last 1 ms. The cycle based PLC runs an exe-
cution algorithm which contains the execution code for 
all (here: 5) sensors and needs a processing time of 8 ms. 
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The event based PLC on the other hand runs an inde-
pendent code block for each sensor. Such a block only 
will be executed if the corresponding sensor provides 
information. For the execution of each independent 
block 2 ms are necessary, while it is assumed, that all 
possible values of a sensor will be handled by the same 
program block or need at least the same time respec-
tively. While the cycle based PLC processes its cycle 
continuously, the event based PLC starts an execution 
only if information from one of the sensors is provided. 
After finishing an execution the latter PLC therefore 
changes to an idle state, where it remains until (at least) 
one of the sensors provides information. 

The functionality of the PLC-I/O is much simpler. In 
the Producer-Consumer-case it waits for arriving sensor 
values and writes them immediately into the PLC’s input 
cache. This process keeps the PLC-I/O busy for 1 ms. In 
the case of an immediate output transfer, the PLC-I/O 
passes the PLC’s output values immediately (respec-
tively after a processing time of 1 ms) to the network. In 
the case of a cycle based sensor’s value capturing the 
PLC-I/O requests the associated field-I/Os every 8 ms 
(Client-Server-mode). The received sensor values will be 
passed to the PLC at the end of each PLC-I/O’s cycle, 
i.e. the PLC receives actual values every 8 ms. The cycle 
based PLC’s execution time therefore is always larger 
than the input refresh rate; and it is mostly larger in the 
case of an event based PLC’s behavior. By choosing the 
sensor value’s hold time to 16 ms it is ensured that  
a) each sensor value will be registered and b) each sensor 
value will be processed before it can be overwritten by a 
new one. In the case of a cyclic output the information is 
passed to the network together with the requests for new 
sensor values, i.e. the time at which the actuator informa-
tion is send is directly dependant of the (cyclically recur-
ring) sensor’s values request sending time.  

Besides the hold time of a sensor value its change 
probability p is important, i.e. that parameter which 
gives the probability that the sensor’s value changes 
within a given time interval. If only one sensor is dis-
cussed, this probability has no influence, as the response 
time will be measured starting with the change and will 
not be influenced by later entities of the sensor value’s 
behavior any more. If more than one sensor is consid-
ered, the probability p is a measure for the probability 
that several sensor values change within a short period of 
time. In the example up to five sensors are considered. 
The change probability is chosen to 10 and 60 changes 
per second (by using a discretization step width of 1 ms 
this results in a change probability of p=0.01 respec-
tively p=0.06).  

The transfer over the network will be represented by a 
constant delay of 2 ms within this paper. This value 
corresponds to the average value of a TCP/IP-
transmission as shown by measurements at the authors’ 
institute [9]. For the use of a variable network transmis-
sion time it is referred to [10], for a discussion on the 

influence of transmission failures to [7]. It is possible to 
attach further PLC-I/Os and field-I/Os to the network. 
Their influence on the network transfer time can be ne-
glected [11] but additional PLC-I/Os accessing the same 
field-I/O will induce waiting times. 

The field-I/O has a double role. First, it records the 
sensor values and transfers them over the network. Sec-
ond, it handles the information passing to the actuators. 
Thereby it is assumed that the information from the 
sensors does not interfere with that one passed to the 
actuators. This could be guaranteed for example by using 
different field-I/Os. The field-I/O needs 2 ms to receive, 
process and pass information to an actuator. The same 
value is used for the recording of the sensor values, in-
cluding reading, packaging and sending. The field-I/O 
owns two waiting queues: The first one located on the 
network side. This will be neglected in the frame of this 
paper as only one PLC-I/O will send requests to the 
field-I/O. For examples dealing with access conflicts, it 
is referred to [7]. The second waiting queue is located on 
the sensor or process side and is necessary to buffer a 
sensor signal until the field-I/O is able to process it. 
While this is not necessary in the Client-Server-Case (as 
all sensor values will be requested at the same time and 
consequently sent in the same telegram), waiting times 
can occur in the Producer-Consumer-Case as the field-
I/O processes each sensor’s value separately.  

Based on this structure, in the following a response 
time analysis will be done for the six system architec-
tures discussed in Table 2. 

4. Response Time Analysis 

The response time of a Networked Automation Sys-
tem (NAS) is defined as the time which will elapse start-
ing from an input change until all corresponding algo-
rithms have been executed and the subsequent outputs 
have all been activated. For the analysis of response 
times several possible methods and approaches are avail-
able. However, as shown in [12], only simulation and 
probabilistic model checking (PMC, [6]) are suitable for 
the analysis of NAS. For most systems PMC is much 
faster and obviously much more precise (i.e. exact) as 
simulative approaches. The main advantages of simula-
tion on the other hand is that a wide range of graphical 
tools is available and with simulation continuous sys-
tems can be modeled, while this is not possible using 
PMC. For more details on the use of PMC for the tempo-
ral analysis of NAS it is referred to [9]. 

PMC is an extension of the classical model checking 
(MC), which allows transitions and initial states to be 
weighted with probabilities. While in MC only a worst 
case analysis is possible, PMC can be used to generate 
probabilistic distributions. To use (P)MC, first an 
automaton-model of the system has to be built. In addi-
tion, properties to be checked are formalized through the 
use of some kind of formal logic. These two descriptions 
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are input to a model checking algorithm which checks 
whether the properties hold on the system. The main 
problem for applying PMC on NAS originates from the 
fact, that a probabilistic discussion relies on a sequence 
of states, i.e. is not able to deal with cyclic behavior. The 
problem can be solved, using signal-tracking. Thereby, 
the basic behavior of all the system components will be 
modeled separately and then connected as given by the 
system structure. Finally, a signal-tracking module is 
added which represents the path of the process super-
vised. For more information on signal-tracking and the 
corresponding modeling process it is referred to [7, 9]. 

The main idea behind this modeling process is to build 
all models as independent and general as possible. This 
guarantees an easy (re)use of the models as well as the 
possibility to generate the PMC-code automatically. To 
the latter end a description language (DesLaNAS) got 
defined, which includes (1) a graphical front-end to 
define and connect the components as well as to generate 
the signal-tracking. Furthermore, it contains (2) a gener-
alized definition of a probabilistic timed automaton for 
both, the continuous and the discrete world. This gener-
alization is necessary, to cover all possible behavior 
present in NAS. Finally (3) a transformation process 
from the graphical front-end towards the PMC-code is 
defined [7, 9, 13]. 

Note: By dealing with more than one cyclic compo-
nent, it also has to be accounted for the drift in between 
their local clocks. Due to the time discretization neces-
sary for applying a PMC analysis on NAS, this only has 
to be considered for systems in which the maximum 
clock difference (over the period of the determined re-
sponse time) is larger than half of the discretization step 
width. 

5. Modeling Aspects 

The signal-tracking for the response time analysis 
based on the architecture shown in Figure 1 is given in 
Figure 2.  

init
fIO1.p net2.t PLC.r PLC.w

net1.tfIO2.p
done PIO2.s

 
Figure 2. Signal-tracking module 

The corresponding process starts with the change of 
the signal at the sensor (init-state). Then the process has 
to wait, until the field-I/O has processed this informa-
tion. Thereby fIO1.p corresponds to the event p gener-
ated by the module fIO1 (field-I/O1) as shown in 
Figure 3. After the field-I/O has processed the informa-
tion, it has to be transported by the network (net2.t – 
note: as the network is assumed to be duplex, there is an 
identical module for each of the directions, namely net1 

from the PLC to the field-I/O and net2). When arriving 
at the PLC-I/O the information is being written directly 
to the input cache of the PLC, so the signal-tracking only 
has to wait until the PLC reads this information (PLC.r), 
writes the corresponding outputs (PLC.w), which then is 
send by the PLC-I/O (PIO2.s) over the network (net1.t). 
Finally the output assignments have to be processed by 
the field-I/O (fIO2.p). 

dnet(x)

x:
=

0 idle
dx
dt = 0 send

deliver
dx
dt = 1

t

network

x:
=

0 request
dx
dt = 1 x=trq

wait
dx
dt = 1

x=tIcyc ∨ Preq
s

PLC-I/O

x=tans

x:
=

0 idle
dx
dt = 0 reqin

ans
dx
dt = 1

p

field-I/O

write

dx
dt = 1 x=t3 x:

=
0

read
dx
dt = 1

x=t4∨req

execute
dx
dt = 1x=t2

w

r

PLC
idle

dx
dt = 0

x=t1x:
=

0

x:
=

0

 
Figure 3. DesLaNAS component modules 

This system requires four different module types: 
network, PLC-I/O, field-I/O and PLC which are shown 
in Figure 3. For a detailed description of the automata 
syntax it is referred to [7]. The network normally is in 
the state idle in which the local clock x is not active 
(dx/dt=0). If the event renamed to send is generated by 
the connected module (for example the fIO1.p event 
already discussed) the automaton changes to the deliver-
state in which it stays until the stochastic delay dnet(x) 
has been elapsed. By changing to the idle-state again, the 
event t is generated and the clock x reset to 0. The PLC-
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I/O module has the same structure and only a different 
transition condition. Here the request-state will be en-
tered either every x=tlcyc or when the request Preq is 
generated by the PLC. Obviously, only one of the two 
may happen, depending on the mode the PLC-I/O is 
running in (cyclic respective interrupt). In the request-
state this automaton stays for the time trq necessary to 
send the requests. By entering the wait state, finally the 
event s is generated. This leads over to the field-I/O-
module, which stays in the idle-state until a request re-
quin arrives. This request either may be received from 
the PLC-I/O or from the sensor. The automaton then 
changes to the ans-state where it stays until the request is 
processed (given by the processing time tans). 

The most complex module is the PLC which contains 
four states. Let’s start in the read state in which the 
automaton stays for t1; that is the time necessary for 
reading the inputs. As soon as t1 has elapsed the automa-
ton changes to state execute in which it stays for the 
parameter dependent time t2. Afterwards all the outputs 
will be written (state write), which requires t3. By chang-
ing to the idle state the event w (write) is generated. The 
idle state is necessary to model both, a cyclic as well as 
an interrupt based behaviour. In the cyclic version t4 is 
set to 0 and therefore the idle state is left immediately. In 
the interrupt based case t4 is set to infinity and the event 
req is connected to the t event of net2.  

Those modules are then instantiated according to their 
occurrence frequency. Finally they must be connected 
and parameterized which allows discussing different 
cases on the same system structure. This generality is 
one of the most important strengths of DesLaNAS.  

6. Case Study  

Typically the response time of a NAS does not equal 
a constant value, but describes the stochastic transfer-
function of the system. Consequently, the best way to 
discuss response times is to display their stochastic dis-
tribution (over the time axis). Due to the discrete time 
axis of the PMC-analysis, this „distribution“ must be 
represented by a set of discrete points, each of them 
representing the probability that the response time can be 
found in the previous time interval, i.e. a value of 5% at 
time 20 ms means that the response time can be found in 
the interval (19, 20] ms with 5% probability, if the dis-
cretization step width equals 1 ms. From the right graph 
(open rhombi) in Figure 4 it thus can be followed, that 
the probability of a response time value situated in the 
interval (43,44] ms is 3.75%.  

Figure 4 shows the response time distributions of the 
cases 1 c and 1 i, cf. Table 2. Those cases are using a 
cycle based PLC and a cycle based Client-Server-
protocol for the sensor value capturing. The difference of 
the two cases is that for the left graph (filled squares) the 
result of the PLC calculations got sent immediately after 
finishing  the  PLC-cycle,  while in the case  investigated  

probability

delay
in ms

Case 1
Cyclic PLC, 10ms

Cyclic PLC-I/O, 8ms

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

10 15 20 25 30 35 40 45

cyclic output
immediate output

 
Figure 4. Response time distribution for 
the cases 1 c and 1 i. 

for the right graph  (open rhombi) the results had to wait 
until the PLC-I/O sent this information together with the 
next (cyclically recurring) sensor value request. While 
the length of the PLC-I/O-cycle can be extracted from 
both graphs (8 ms), the length of the PLC-cycle only is 
visible in the left graph (filled squares). For the follow-
ing comparison with other cases, it is important to note, 
that the two graphs in Figure 4 are independent from the 
signal change probability p, as well as from the number 
of sensors (as long as the previously stated assumptions 
are fulfilled). From the distributions shown in Figure 4, 
characteristic values – as shown in Table 3 – can be 
determined. Maximum and minimum designate the larg-
est and smallest abscissa value with a probability value 
larger than zero. Average and deviation are self explana-
tory terms. And spread is the largest minus the smallest 
value plus one. 

Please realize that the case using a cyclic output (1 c) 
is better only in the spread-column. The immediate out-
put (1 i) case however is better in all the other columns.  

Table 3. Characteristic response time val-
ues (Cases 1 i and 1 c) 
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1i 32 3.674 24 40 17 
1c 36.9 4.323 31 46 16 

 

However, the cyclic case has its advantages as can be 
verified by analyzing Figure 5, which shows the re-
sponse time distribution for the case 4 c: Due to the 
cyclic behavior, the influence of a varying number of 
sensors is relatively small. Same is true for the signal’s 
value change probability p. Both factors mainly influ-
ence the maximal value (cf. also Table 4).  

Other than in the first case, the PLC of the fourth case 
does not exhibit a cyclic behavior, but starts working if 
requested. Consequently, the duration of the PLC’s exe-
cution time is varying and the PLC will start the execu-
tion immediately after a sensor value arrived – at least as  
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Table 4. Characteristic response time val-
ues (Cases 4 c and 4 i) 
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4 c 1  26.5 2.29 23 30 8 
 5 0.01 26.504 2.30 23 38 16 
 3 0.06 26.506 2.30 23 38 16 
 5 0.06 26.533 2.34 23 38 16 

4 i 1  22.5 2.29 19 26 8 
 5 0.01 22.569 2.32 19 34 16 
 3 0.06 22.606 2.33 19 30 12 
 5 0.06 22.713 2.37 19 34 16 

 

long as there is no competition (i.e. other sensor values 
to be processed). Conspicuously, case 4 c is faster than 
both cases 1, even under competition! 

The influence of the PLC-I/O-cycle’s length can be 
found; both in Figure 5 as well as in Table 4 (the maxi-
mum values have a difference of 8 ms, i.e. the plateau’ 
width equals 8 ms). This is true for case 4 i (immediately 
output) also, as long as there is no competition (cf. 
Figure 6). 

Case 4
(using cyclic output)

Interrupt PLC 
(2ms + 2ms per sensor)

PLC-I/O: read + write, 8ms

0%
1%
2%
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4%
5%
6%
7%
8%
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10%
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delay
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Figure 5. Response time distribution for 
the case 4 c. 

probability

delay
in ms

Case 4 
using an immediate output

Interrupt PLC 
(2ms + 2ms per sensor)

Cyclic Input PLC-I/O, 8ms
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9%

10%
11%
12%
13%

10 15 20 25 30 35

without
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with competition,
pSig=0.01
with competition,
pSig=0.06

 
Figure 6. Response time distribution for 
the case 4 i 

However, it is distinctly realizable that both, an increas-
ing number of sensors, as well as an increasing value of 
the sensor’s value change probability p, are delaying the 
information. The reason for case 4 i still outclass its 
cycle based correspondent results from the whole distri-
bution being shifted 4 ms to the left. This equals the 
average waiting-for-the-PLC-I/O-to-sent-the-output-
information-time of the 4 c case. However, deviation and 
spread of the two cases 4 differ only a bit: While the 
deviations in the case 4 c are smaller or equal than in the 
case 4 i, the opposite is true for the spread values. 

This leads over to the remaining two cases, which use 
a Producer-Consumer-protocol instead of the Client-
Server-protocol for the sensor value coverage. I.e. a 
change in the sensor’s value leads directly toward a 
field-I/O-activity (instead of a waiting period for the 
arrival of the PLC-I/O’s request). Figure 7 shows the 
response time distributions of case 2, using a cyclic PLC. 

Note: As shown in [7] this leads to synchronization 
delays already in the competition-free case.  

probability

delay
in ms

Case 2
Cyclic PLC, 10ms

Producer-Consumer,
Hold-Time: 16ms
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Figure 7. Response time distribution for 
the case 2 

Now, the duration of the PLC-cycle (10 ms) can be 
clearly indicated. Starting from the original rectangular 
shape, which represents the competition-free case, in-
creasing competition leads to more and more responses 
being delayed for another PLC-cycle (cf. Figure 7). This 
is due to waiting times in front of the field-I/O as in 
consequence the next possible PLC-cycle-start (read-
state) might not be caught any more, i.e. the information 
has to wait for next reading state (which is meet every 
10 ms). Moreover, Table 5 points out that the influence 
of additional sensors is smaller than the influence of an 
increased change probability p. 
Thereby it is conspicuous that case 2 comes off worse 
than all other previously discussed cases in respect to the 
dependence of the number of sensors, the change prob-
ability p, and the spread value. In respect to average and 
deviation values it does more poorly than the cases 4 i 
and 4 c, but better than the cases 1 i and 1 c. 

So, it remains case 3 where all parameters are turned 
to “as the need arises”. I.e. the PLC is based on interrupt, 
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Table 5. Characteristic response time val-
ues, case 2 
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1  28.5 2.87 24 33 10 
5 0.01 28.864 3.12 24 44 21 
3 0.06 29.192 3.29 24 40 17 
5 0.06 29.920 3.58 24 44 21 

 
the sensor values are transmitted by the use of the Pro-
ducer-Consumer-protocol and the actuator information is 
passed immediately from the PLC-I/O to the network. 
This leads – as expected – to the fastest behavior of all 
test cases (cf. Figure 8 and Table 6). Though, the prize 
for this speed is that case 3 also comes with the highest 
dependency on the number of sensors as well as on the 
change probability. 

Case 3
Interrupt PLC (2ms + 2ms per sensor)

Producer-Consumer,
Hold-time: 16ms

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 15 20 25 30 35

without competition
with competition, pSig=0.01
with competition, pSig=0.06

probability

delay
in ms  

Figure 8. Response time distribution for 
the case 3 

7. Discussion 

Discussing the question which of the six basic archi-
tecture presented in Table 2 is the optimal one, requires 
the determination concerning the change probability on 
the one hand, and the frequency with which the control-
ler processes events (respectively how often it requires 
new information) on the other hand. Without doubt, a 
signal which’s value changes in average once a day can 
be implemented interrupt based. However for a signal 
which’s value changes in average every 40 ms this an-
swer is much less obvious.  

In particular the influence of competition and change 
probability should not be neglected. This is pointed out 
with some details in Table 7. In the left column of the 
table (performance) the six cases are ordered based on 
their absolute average, deviation and spread values. In 
the right column (robustness) in contrast, they are or-
dered concerning their dependency of the system’s load. 

Table 6. Characteristic response time val-
ues, case 3 
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1  18 0 18 18 1 
5 0.01 18.959 2.19 18 34 17 
3 0.06 19.384 2.75 18 28 11 
5 0.06 21.728  3.25 18 34 17 

 
Three aspects should be mentioned:  

 
1. In both categories case 2 (cyclic PLC, Producer-

Consumer for the sensor value acquisition) comes 
out constantly on rank four, while the order of all 
other cases in the two categories is reversed, i.e. 
rank 1 in the left category becomes rank 5 in the 
right category and vise versa.  

2. As case 2 thereby changes its position with the 
cases 4 i and 4 c, this can be formulated the other 
way round also: Case 4 (interrupt based PLC and 
Client-Server for the sensor’s value acquisition) 
comes out always on rank 2 / 3.  

3. Given the maximum load discussed in here, the 
maximum value of case 3 is still smaller or equal 
than other case’s maximum value – despite the 
lack of robustness of this case.  

 

Table 7. Evaluation of the six cases with 
respect to performance and robustness 

 Performance Robustness 
++ Case 3 Case 1i/c 
+ Case 4s Case 4z 
0 Case 4z Case 4s 
- Case 2 Case 2 
-- Case 1i/1c Case 3 

8. Summary and Outlook 

The analysis of different NAS-architectures demon-
strates that the traditional architecture (case 1 using a 
cyclic PLC and the Client-Server-protocol) is slow but 
robust (cf. Table 8). In contrast an architecture totally 
based on “as the need arises” (case 3) is extremely fast 
but also extremely dependent on the system’s load. The 
surprise of this analysis is an unusual constellation: It 
uses an interrupt based PLC, although the PLC-I/O is 
using a Client-Server-protocol. In particular by dealing 
with complex systems exhibiting a varied set of influ-
ences and possibly a changing system load, this architec-
ture does best.  
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Table 8. Characteristic response time val-
ues without competition (top part of the 
table) and relative increase comparing the 
case with and without competition (5 sen-
sors, p=0.06) 
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1 1 i 32 3.67 24 40 17 
1 1 c 36.9 4.32 31 46 16 
1 2 28.5 2.87 24 33  10 
1 3 18 0 18 18 1 
1 4 i 22.5 2.29 19 26 8 
1 4 c 26.5 2.29 23 30 8 
5 1 no influence 
5 2 5 % 25 % 33 % 1.1 
5 3 21 % ∞ 89 % 16.0 
5 4 i 0.9 % 3 % 31 % 1.0 
5 4 c 0.1 % 2 % 

no
 in

-
flu

en
ce

 

27 % 1.0 
 
Future work will generalize the analysis by succes-

sively remove the simplifications introduced in section 3. 
Moreover, the test conditions will be tightened. Hereunto 
belongs for example failures in the system as well as 
shared access of several PLCs to the same field-I/O in 
the Client-Server-case (leading to a much better relative 
performance of the Producer-Consumer-case). Other 
than the competition of several sensors attached to the 
same field-I/O, which has no effect on the minimum 
response time, the competition between different PLCs 
requesting the same field-I/O may have, as demonstrated 
for example in [7]. 

Finally, it should be checked whether or not the as-
sumption of dealing with a robust network is true also 
for Producer-Consumer-protocol or an immediate actua-
tor value output by the PLC-I/O (this assumption is yet 
validated only for the Client-Server-protocol). 
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