
1-4244-1506-3/08/$25.00 ©2008 IEEE

Reactivity Analysis of different Networked Automation System Architectures

Jürgen Greifeneder und Georg Frey
University of Kaiserslautern

Erwin-Schrödinger-Straße 12, 67663 Kaiserslautern
{greifeneder, frey}@eit.uni-kl.de

Abstract

The reactivity of Networked Automation Systems
(NAS) has direct influence on safety and quality aspects.
It can be determined by a response time analysis, which
itself can be calculated using probabilistic model check-
ing (PMC). The analysis of a NAS has to account for
several coupled components, each of them exhibiting its
own behavior. Consequently, in this article the influ-
ences of (1) the controller‘s execution behavior includ-
ing its network interface card (cyclic vs. interrupt based)
and (2) the communication model (Producer-Consumer
vs. Client-Server) on the response time behavior will be
analyzed. For this purpose the systems are represented
by abstract models using probabilistic timed automata.
Probabilistic model checking is used to compare the
reactivity of different possible combinations of the basic
behaviors.

1. Introduction

Nowadays, control systems typically are realized as a
superposition of several time driven processes (e.g. PLC,
IEC 61131). In contrary thereto in embedded systems
normally event driven (interrupt based) processes are
used. The same is true for some modern control architec-
tures especially those in the distributed systems area
(IEC 61499). However, particularly in the latter area,
there are also mixed architecture as e.g. time driven
implementations of IEC 61499 in IsaGraF.

Designing a control system, not only the functional
but also the temporal aspects must be considered. That’s
because information not arriving within given time
bounds mostly has the same consequences as lost infor-
mation. For this reason it is necessary to have a very
precise knowledge of occurring delays.

The use of Networked Automation Systems (NAS)
instead of traditional, directly wired systems, leads to a
situation which necessitates the consideration of a multi-
tude of effects. Due to those effects significant delays
may occur. As the worst delays only occur with a very
small probability, the use of worst-case-analytic-methods
would direct to unwarranted high hardware require-

ments. Fortunately, it is sufficient for most applications
to meet temporal boundaries most of the time, e.g. in
99.9% of all cases.

By determining the overall response time probability
distribution instead of only the boundary values has the
advantage that the result can be used for the analysis of
quality aspects directly [1]. It can be shown, that not
only the speed of the components, but also the wiring
and the functional architecture do have crucial influence
on the overall system’s reactivity.

Consequently, the reactivity of different Networked
Automation System’s architectures will be analyzed in
this article. The thereby discussed systems have several
input signals Ii, each of them with a possibly varying
triggering probability. If an input signal got activated,
the PLC has to execute a predefined action fi in which’s
curse the output Oi (i.e. the input value of an actuator)
will be changed. The corresponding analytical interest
lies in the time necessary to activate the output Oi count-
ing from the triggering moment of the input signal Ii.
This delay is called response time.

To do so, not only the static system has to be dis-
cussed. The types of signals- and processes dealt with
have to be considered too. While the input part usually is
event driven, the process part shows periodically recur-
ring processes, as e.g. cyclic control algorithms.

A lot of work has been done in the area of network
analysis already, e.g. [2, 3, 4, 5]. However, only very
few of them did address the whole control loop and most
of them were focused on a specific bus protocol (as e.g.
ModBus-TCP or CAN), whereas in this work the behav-
ior itself is used abstracted from the concrete implemen-
tation towards its principal behavior.

In section 2 four possible architectures are introduced
and the corresponding characteristics are discussed. In
section 3 the structure of an example is introduced.
Based on this structure section 4 explains the response
time analysis. Section 5 gives the corresponding model-
ing aspects and section 6 the response time distributions,
the reactivities and the characteristics of the four archi-
tectures introduced in section 2. The underlying analysis
has been done, using probabilistic model checking
(PMC, [6]). Section 7 finally comprises those results in
short, while section 8 gives a summary and an outlook
on future works.

1031

2. Basic architectures

The response time analysis is done for the four
architectures shown in Table 1. Those four architectures
result from the differentiation of event and time based
behavior on the one hand and the consideration of the
communication- as well as control-level on the other
hand. The communication thereby is distinguished be-
tween a Client-Server-model (e.g. ModBus TCP) and a
Producer-Consumer-model (e.g. CAN). Note that the
Producer-Consumer-model is also known as Publish-
Subscriber-model. For the control the execution proce-
dure is decisive which may either be interrupt based (e.g.
Microcontroller-based systems) or cycle based (e.g.
Programmable Logic Controllers, PLCs). For simplicity
in the following the term PLC is used for all controllers
regardless of their execution model.

Table 1. Basic behavior modes of control
systems

 Communication Control

event driven Producer/Consumer Interrupt

time driven Client/Server PLC-cycle

While in the Client-Server-model the I/O-modules are

requested cyclically – which results in considerable
delays due to synchronization [7] – the Producer-
Consumer-model is event driven, i.e. messages will be
sent as soon as they are generated, i.e. as soon as there is
new information available to be sent. The same seems to
be true for the Control-level, as in an interrupt based
execution the information has to wait for processing
only, if the controller is busy, i.e. still handling an infor-
mation that arrived before, while in the cyclic execution
waiting delays occur in most cases.

Besides this signal registration the result of the execu-
tion must be transferred to the corresponding actuator.
Thereby it also can be distinguished between a cyclic
and an event driven structure. While it makes less sense,
to couple an event-based sensor’s value capturing with
cyclic actuator activation, the reverse case is indeed
interesting and suitable in the real world.

Consequently the six architectures shown in Table 2
are investigated. For those six, the response time behav-
ior of a reference example is analyzed in more detail in
the following sections.

Note: Obviously, there are some more combinations
conceivable. For example different cases of synchroniza-
tion between PLC and PLC-I/O which would lead to-
wards a behavior in between the cases 1c and 2 or 2 and
4i/c, respectively. Moreover, most realizations of D/A,
A/D converters are based on cyclic processing. However,
their cycle times normally are much faster than the
smallest time resolution used in this paper and therefore
are neglected. For an example of a system with cyclic
behavior in the field-I/O, the network transmission and

the PLC, it is referred to the multi-rate system discussed
in [8]. A multi-rate system thereby is defined as a sys-
tem, including different sampling or cycle times.

Table 2. Meaningful basic architectures of
control systems

 PLC Field-I/O PLC-I/O
Case Sensor Actuator

1 c Cyclic on request Cyclic
1 i Cyclic on request Cyclic Immediately

2 Cyclic Producer-Consumer immediately

3 interrupt Producer-Consumer immediately

4 c interrupt on request cyclic
4 i interrupt on request Cyclic immediately

3. System Description

For the comparative analysis a typical example from
the area of Networked Automation Systems is used as
shown in Figure 1. The parameters used are derived from
real system parameters, but shall only be dealt in an
academic way, in here.

PLC PLC-I/O network

field-I/O 2
actuator 1

actuator 2

actuator m
…

further I/O-components

field-I/O 1

sensor 1

sensor 2

sensor n

…

Figure 1. Case Study for the comparative
analysis. Note: It is possible but not nec-
essary to separate sensors and actuators.

On the left hand side the behavior of the PLC is pre-
sented, which is given by a cycle time of (constant)
10 ms in the cyclic case and a variable execution time in
the event based case.

If a sensor’s information arrives while the PLC is
busy, this information has to wait until the PLC returns
to its state „read inputs“. While this is mostly the case
for the cycle based operation, in the event based one it
only occurs if other sensors values have triggered a PLC-
execution just before. The execution sequence thereby
generally contains one time slot each for reading the
inputs and for writing the outputs. Both time slots are
assumed to last 1 ms. The cycle based PLC runs an exe-
cution algorithm which contains the execution code for
all (here: 5) sensors and needs a processing time of 8 ms.

1032

The event based PLC on the other hand runs an inde-
pendent code block for each sensor. Such a block only
will be executed if the corresponding sensor provides
information. For the execution of each independent
block 2 ms are necessary, while it is assumed, that all
possible values of a sensor will be handled by the same
program block or need at least the same time respec-
tively. While the cycle based PLC processes its cycle
continuously, the event based PLC starts an execution
only if information from one of the sensors is provided.
After finishing an execution the latter PLC therefore
changes to an idle state, where it remains until (at least)
one of the sensors provides information.

The functionality of the PLC-I/O is much simpler. In
the Producer-Consumer-case it waits for arriving sensor
values and writes them immediately into the PLC’s input
cache. This process keeps the PLC-I/O busy for 1 ms. In
the case of an immediate output transfer, the PLC-I/O
passes the PLC’s output values immediately (respec-
tively after a processing time of 1 ms) to the network. In
the case of a cycle based sensor’s value capturing the
PLC-I/O requests the associated field-I/Os every 8 ms
(Client-Server-mode). The received sensor values will be
passed to the PLC at the end of each PLC-I/O’s cycle,
i.e. the PLC receives actual values every 8 ms. The cycle
based PLC’s execution time therefore is always larger
than the input refresh rate; and it is mostly larger in the
case of an event based PLC’s behavior. By choosing the
sensor value’s hold time to 16 ms it is ensured that
a) each sensor value will be registered and b) each sensor
value will be processed before it can be overwritten by a
new one. In the case of a cyclic output the information is
passed to the network together with the requests for new
sensor values, i.e. the time at which the actuator informa-
tion is send is directly dependant of the (cyclically recur-
ring) sensor’s values request sending time.

Besides the hold time of a sensor value its change
probability p is important, i.e. that parameter which
gives the probability that the sensor’s value changes
within a given time interval. If only one sensor is dis-
cussed, this probability has no influence, as the response
time will be measured starting with the change and will
not be influenced by later entities of the sensor value’s
behavior any more. If more than one sensor is consid-
ered, the probability p is a measure for the probability
that several sensor values change within a short period of
time. In the example up to five sensors are considered.
The change probability is chosen to 10 and 60 changes
per second (by using a discretization step width of 1 ms
this results in a change probability of p=0.01 respec-
tively p=0.06).

The transfer over the network will be represented by a
constant delay of 2 ms within this paper. This value
corresponds to the average value of a TCP/IP-
transmission as shown by measurements at the authors’
institute [9]. For the use of a variable network transmis-
sion time it is referred to [10], for a discussion on the

influence of transmission failures to [7]. It is possible to
attach further PLC-I/Os and field-I/Os to the network.
Their influence on the network transfer time can be ne-
glected [11] but additional PLC-I/Os accessing the same
field-I/O will induce waiting times.

The field-I/O has a double role. First, it records the
sensor values and transfers them over the network. Sec-
ond, it handles the information passing to the actuators.
Thereby it is assumed that the information from the
sensors does not interfere with that one passed to the
actuators. This could be guaranteed for example by using
different field-I/Os. The field-I/O needs 2 ms to receive,
process and pass information to an actuator. The same
value is used for the recording of the sensor values, in-
cluding reading, packaging and sending. The field-I/O
owns two waiting queues: The first one located on the
network side. This will be neglected in the frame of this
paper as only one PLC-I/O will send requests to the
field-I/O. For examples dealing with access conflicts, it
is referred to [7]. The second waiting queue is located on
the sensor or process side and is necessary to buffer a
sensor signal until the field-I/O is able to process it.
While this is not necessary in the Client-Server-Case (as
all sensor values will be requested at the same time and
consequently sent in the same telegram), waiting times
can occur in the Producer-Consumer-Case as the field-
I/O processes each sensor’s value separately.

Based on this structure, in the following a response
time analysis will be done for the six system architec-
tures discussed in Table 2.

4. Response Time Analysis

The response time of a Networked Automation Sys-
tem (NAS) is defined as the time which will elapse start-
ing from an input change until all corresponding algo-
rithms have been executed and the subsequent outputs
have all been activated. For the analysis of response
times several possible methods and approaches are avail-
able. However, as shown in [12], only simulation and
probabilistic model checking (PMC, [6]) are suitable for
the analysis of NAS. For most systems PMC is much
faster and obviously much more precise (i.e. exact) as
simulative approaches. The main advantages of simula-
tion on the other hand is that a wide range of graphical
tools is available and with simulation continuous sys-
tems can be modeled, while this is not possible using
PMC. For more details on the use of PMC for the tempo-
ral analysis of NAS it is referred to [9].

PMC is an extension of the classical model checking
(MC), which allows transitions and initial states to be
weighted with probabilities. While in MC only a worst
case analysis is possible, PMC can be used to generate
probabilistic distributions. To use (P)MC, first an
automaton-model of the system has to be built. In addi-
tion, properties to be checked are formalized through the
use of some kind of formal logic. These two descriptions

1033

are input to a model checking algorithm which checks
whether the properties hold on the system. The main
problem for applying PMC on NAS originates from the
fact, that a probabilistic discussion relies on a sequence
of states, i.e. is not able to deal with cyclic behavior. The
problem can be solved, using signal-tracking. Thereby,
the basic behavior of all the system components will be
modeled separately and then connected as given by the
system structure. Finally, a signal-tracking module is
added which represents the path of the process super-
vised. For more information on signal-tracking and the
corresponding modeling process it is referred to [7, 9].

The main idea behind this modeling process is to build
all models as independent and general as possible. This
guarantees an easy (re)use of the models as well as the
possibility to generate the PMC-code automatically. To
the latter end a description language (DesLaNAS) got
defined, which includes (1) a graphical front-end to
define and connect the components as well as to generate
the signal-tracking. Furthermore, it contains (2) a gener-
alized definition of a probabilistic timed automaton for
both, the continuous and the discrete world. This gener-
alization is necessary, to cover all possible behavior
present in NAS. Finally (3) a transformation process
from the graphical front-end towards the PMC-code is
defined [7, 9, 13].

Note: By dealing with more than one cyclic compo-
nent, it also has to be accounted for the drift in between
their local clocks. Due to the time discretization neces-
sary for applying a PMC analysis on NAS, this only has
to be considered for systems in which the maximum
clock difference (over the period of the determined re-
sponse time) is larger than half of the discretization step
width.

5. Modeling Aspects

The signal-tracking for the response time analysis
based on the architecture shown in Figure 1 is given in
Figure 2.

init
fIO1.p net2.t PLC.r PLC.w

net1.tfIO2.p
done PIO2.s

Figure 2. Signal-tracking module

The corresponding process starts with the change of
the signal at the sensor (init-state). Then the process has
to wait, until the field-I/O has processed this informa-
tion. Thereby fIO1.p corresponds to the event p gener-
ated by the module fIO1 (field-I/O1) as shown in
Figure 3. After the field-I/O has processed the informa-
tion, it has to be transported by the network (net2.t –
note: as the network is assumed to be duplex, there is an
identical module for each of the directions, namely net1

from the PLC to the field-I/O and net2). When arriving
at the PLC-I/O the information is being written directly
to the input cache of the PLC, so the signal-tracking only
has to wait until the PLC reads this information (PLC.r),
writes the corresponding outputs (PLC.w), which then is
send by the PLC-I/O (PIO2.s) over the network (net1.t).
Finally the output assignments have to be processed by
the field-I/O (fIO2.p).

dnet(x)

x:
=

0 idle
dx
dt = 0 send

deliver
dx
dt = 1

t

network

x:
=

0 request
dx
dt = 1 x=trq

wait
dx
dt = 1

x=tIcyc ∨ Preq
s

PLC-I/O

x=tans

x:
=

0 idle
dx
dt = 0 reqin

ans
dx
dt = 1

p

field-I/O

write

dx
dt = 1 x=t3 x:

=
0

read
dx
dt = 1

x=t4∨req

execute
dx
dt = 1x=t2

w

r

PLC
idle

dx
dt = 0

x=t1x:
=

0

x:
=

0

Figure 3. DesLaNAS component modules

This system requires four different module types:
network, PLC-I/O, field-I/O and PLC which are shown
in Figure 3. For a detailed description of the automata
syntax it is referred to [7]. The network normally is in
the state idle in which the local clock x is not active
(dx/dt=0). If the event renamed to send is generated by
the connected module (for example the fIO1.p event
already discussed) the automaton changes to the deliver-
state in which it stays until the stochastic delay dnet(x)
has been elapsed. By changing to the idle-state again, the
event t is generated and the clock x reset to 0. The PLC-

1034

I/O module has the same structure and only a different
transition condition. Here the request-state will be en-
tered either every x=tlcyc or when the request Preq is
generated by the PLC. Obviously, only one of the two
may happen, depending on the mode the PLC-I/O is
running in (cyclic respective interrupt). In the request-
state this automaton stays for the time trq necessary to
send the requests. By entering the wait state, finally the
event s is generated. This leads over to the field-I/O-
module, which stays in the idle-state until a request re-
quin arrives. This request either may be received from
the PLC-I/O or from the sensor. The automaton then
changes to the ans-state where it stays until the request is
processed (given by the processing time tans).

The most complex module is the PLC which contains
four states. Let’s start in the read state in which the
automaton stays for t1; that is the time necessary for
reading the inputs. As soon as t1 has elapsed the automa-
ton changes to state execute in which it stays for the
parameter dependent time t2. Afterwards all the outputs
will be written (state write), which requires t3. By chang-
ing to the idle state the event w (write) is generated. The
idle state is necessary to model both, a cyclic as well as
an interrupt based behaviour. In the cyclic version t4 is
set to 0 and therefore the idle state is left immediately. In
the interrupt based case t4 is set to infinity and the event
req is connected to the t event of net2.

Those modules are then instantiated according to their
occurrence frequency. Finally they must be connected
and parameterized which allows discussing different
cases on the same system structure. This generality is
one of the most important strengths of DesLaNAS.

6. Case Study

Typically the response time of a NAS does not equal
a constant value, but describes the stochastic transfer-
function of the system. Consequently, the best way to
discuss response times is to display their stochastic dis-
tribution (over the time axis). Due to the discrete time
axis of the PMC-analysis, this „distribution“ must be
represented by a set of discrete points, each of them
representing the probability that the response time can be
found in the previous time interval, i.e. a value of 5% at
time 20 ms means that the response time can be found in
the interval (19, 20] ms with 5% probability, if the dis-
cretization step width equals 1 ms. From the right graph
(open rhombi) in Figure 4 it thus can be followed, that
the probability of a response time value situated in the
interval (43,44] ms is 3.75%.

Figure 4 shows the response time distributions of the
cases 1 c and 1 i, cf. Table 2. Those cases are using a
cycle based PLC and a cycle based Client-Server-
protocol for the sensor value capturing. The difference of
the two cases is that for the left graph (filled squares) the
result of the PLC calculations got sent immediately after
finishing the PLC-cycle, while in the case investigated

probability

delay
in ms

Case 1
Cyclic PLC, 10ms

Cyclic PLC-I/O, 8ms

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

10 15 20 25 30 35 40 45

cyclic output
immediate output

Figure 4. Response time distribution for
the cases 1 c and 1 i.

for the right graph (open rhombi) the results had to wait
until the PLC-I/O sent this information together with the
next (cyclically recurring) sensor value request. While
the length of the PLC-I/O-cycle can be extracted from
both graphs (8 ms), the length of the PLC-cycle only is
visible in the left graph (filled squares). For the follow-
ing comparison with other cases, it is important to note,
that the two graphs in Figure 4 are independent from the
signal change probability p, as well as from the number
of sensors (as long as the previously stated assumptions
are fulfilled). From the distributions shown in Figure 4,
characteristic values – as shown in Table 3 – can be
determined. Maximum and minimum designate the larg-
est and smallest abscissa value with a probability value
larger than zero. Average and deviation are self explana-
tory terms. And spread is the largest minus the smallest
value plus one.

Please realize that the case using a cyclic output (1 c)
is better only in the spread-column. The immediate out-
put (1 i) case however is better in all the other columns.

Table 3. Characteristic response time val-
ues (Cases 1 i and 1 c)

C
as

e

A
ve

ra
ge

(m

s)

D
ev

ia
tio

n
(m

s)

M
in

im
um

(m

s)

M
ax

im
um

(m

s)

Sp
re

ad

(m
s)

1i 32 3.674 24 40 17
1c 36.9 4.323 31 46 16

However, the cyclic case has its advantages as can be
verified by analyzing Figure 5, which shows the re-
sponse time distribution for the case 4 c: Due to the
cyclic behavior, the influence of a varying number of
sensors is relatively small. Same is true for the signal’s
value change probability p. Both factors mainly influ-
ence the maximal value (cf. also Table 4).

Other than in the first case, the PLC of the fourth case
does not exhibit a cyclic behavior, but starts working if
requested. Consequently, the duration of the PLC’s exe-
cution time is varying and the PLC will start the execu-
tion immediately after a sensor value arrived – at least as

1035

Table 4. Characteristic response time val-
ues (Cases 4 c and 4 i)

C
as

e

Se

ns
or

s

p
A

ve
ra

ge

(m
s)

D
ev

ia
tio

n
(m

s)

M
in

im
um

(m

s)

M
ax

im
um

(m

s)

Sp
re

ad

(m
s)

4 c 1 26.5 2.29 23 30 8
 5 0.01 26.504 2.30 23 38 16
 3 0.06 26.506 2.30 23 38 16
 5 0.06 26.533 2.34 23 38 16

4 i 1 22.5 2.29 19 26 8
 5 0.01 22.569 2.32 19 34 16
 3 0.06 22.606 2.33 19 30 12
 5 0.06 22.713 2.37 19 34 16

long as there is no competition (i.e. other sensor values
to be processed). Conspicuously, case 4 c is faster than
both cases 1, even under competition!

The influence of the PLC-I/O-cycle’s length can be
found; both in Figure 5 as well as in Table 4 (the maxi-
mum values have a difference of 8 ms, i.e. the plateau’
width equals 8 ms). This is true for case 4 i (immediately
output) also, as long as there is no competition (cf.
Figure 6).

Case 4
(using cyclic output)

Interrupt PLC
(2ms + 2ms per sensor)

PLC-I/O: read + write, 8ms

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
11%
12%
13%

10 15 20 25 30 35 40

without
competition

4 additional
sensors,
pSig=0.06

probability

delay
in ms

12,43%

12,44%

12,45%

12,46%

12,47%

12,48%

12,49%

12,50%

12,51%

22 23 24 25 26 27 28 29 30 31

0,00%

0,01%

0,02%

0,03%

0,04%

0,05%

0,06%

0,07%

30 31 32 33 34 35 36 37 38 39 40

Figure 5. Response time distribution for
the case 4 c.

probability

delay
in ms

Case 4
using an immediate output

Interrupt PLC
(2ms + 2ms per sensor)

Cyclic Input PLC-I/O, 8ms

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
11%
12%
13%

10 15 20 25 30 35

without
competition
with competition,
pSig=0.01
with competition,
pSig=0.06

Figure 6. Response time distribution for
the case 4 i

However, it is distinctly realizable that both, an increas-
ing number of sensors, as well as an increasing value of
the sensor’s value change probability p, are delaying the
information. The reason for case 4 i still outclass its
cycle based correspondent results from the whole distri-
bution being shifted 4 ms to the left. This equals the
average waiting-for-the-PLC-I/O-to-sent-the-output-
information-time of the 4 c case. However, deviation and
spread of the two cases 4 differ only a bit: While the
deviations in the case 4 c are smaller or equal than in the
case 4 i, the opposite is true for the spread values.

This leads over to the remaining two cases, which use
a Producer-Consumer-protocol instead of the Client-
Server-protocol for the sensor value coverage. I.e. a
change in the sensor’s value leads directly toward a
field-I/O-activity (instead of a waiting period for the
arrival of the PLC-I/O’s request). Figure 7 shows the
response time distributions of case 2, using a cyclic PLC.

Note: As shown in [7] this leads to synchronization
delays already in the competition-free case.

probability

delay
in ms

Case 2
Cyclic PLC, 10ms

Producer-Consumer,
Hold-Time: 16ms

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

10 15 20 25 30 35 40 45

without
competition

with competition,
pSign=0.01

with competition,
pSig=0.06

Figure 7. Response time distribution for
the case 2

Now, the duration of the PLC-cycle (10 ms) can be
clearly indicated. Starting from the original rectangular
shape, which represents the competition-free case, in-
creasing competition leads to more and more responses
being delayed for another PLC-cycle (cf. Figure 7). This
is due to waiting times in front of the field-I/O as in
consequence the next possible PLC-cycle-start (read-
state) might not be caught any more, i.e. the information
has to wait for next reading state (which is meet every
10 ms). Moreover, Table 5 points out that the influence
of additional sensors is smaller than the influence of an
increased change probability p.
Thereby it is conspicuous that case 2 comes off worse
than all other previously discussed cases in respect to the
dependence of the number of sensors, the change prob-
ability p, and the spread value. In respect to average and
deviation values it does more poorly than the cases 4 i
and 4 c, but better than the cases 1 i and 1 c.

So, it remains case 3 where all parameters are turned
to “as the need arises”. I.e. the PLC is based on interrupt,

1036

Table 5. Characteristic response time val-
ues, case 2

Se

ns
or

s

p
A

ve
ra

ge

(m
s)

D
ev

ia
tio

n
(m

s)

M
in

im
um

(m

s)

M
ax

i-
m

um
 (m

s)

Sp
re

ad

(m
s)

1 28.5 2.87 24 33 10
5 0.01 28.864 3.12 24 44 21
3 0.06 29.192 3.29 24 40 17
5 0.06 29.920 3.58 24 44 21

the sensor values are transmitted by the use of the Pro-
ducer-Consumer-protocol and the actuator information is
passed immediately from the PLC-I/O to the network.
This leads – as expected – to the fastest behavior of all
test cases (cf. Figure 8 and Table 6). Though, the prize
for this speed is that case 3 also comes with the highest
dependency on the number of sensors as well as on the
change probability.

Case 3
Interrupt PLC (2ms + 2ms per sensor)

Producer-Consumer,
Hold-time: 16ms

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 15 20 25 30 35

without competition
with competition, pSig=0.01
with competition, pSig=0.06

probability

delay
in ms

Figure 8. Response time distribution for
the case 3

7. Discussion

Discussing the question which of the six basic archi-
tecture presented in Table 2 is the optimal one, requires
the determination concerning the change probability on
the one hand, and the frequency with which the control-
ler processes events (respectively how often it requires
new information) on the other hand. Without doubt, a
signal which’s value changes in average once a day can
be implemented interrupt based. However for a signal
which’s value changes in average every 40 ms this an-
swer is much less obvious.

In particular the influence of competition and change
probability should not be neglected. This is pointed out
with some details in Table 7. In the left column of the
table (performance) the six cases are ordered based on
their absolute average, deviation and spread values. In
the right column (robustness) in contrast, they are or-
dered concerning their dependency of the system’s load.

Table 6. Characteristic response time val-
ues, case 3

Se

ns
or

s

p

A
ve

ra
ge

(m

s)

D
ev

ia
tio

n
(m

s)

M
in

im
um

(m

s)

M
ax

im
um

(m

s)

Sp
re

ad

(m
s)

1 18 0 18 18 1
5 0.01 18.959 2.19 18 34 17
3 0.06 19.384 2.75 18 28 11
5 0.06 21.728 3.25 18 34 17

Three aspects should be mentioned:

1. In both categories case 2 (cyclic PLC, Producer-

Consumer for the sensor value acquisition) comes
out constantly on rank four, while the order of all
other cases in the two categories is reversed, i.e.
rank 1 in the left category becomes rank 5 in the
right category and vise versa.

2. As case 2 thereby changes its position with the
cases 4 i and 4 c, this can be formulated the other
way round also: Case 4 (interrupt based PLC and
Client-Server for the sensor’s value acquisition)
comes out always on rank 2 / 3.

3. Given the maximum load discussed in here, the
maximum value of case 3 is still smaller or equal
than other case’s maximum value – despite the
lack of robustness of this case.

Table 7. Evaluation of the six cases with
respect to performance and robustness

 Performance Robustness
++ Case 3 Case 1i/c
+ Case 4s Case 4z
0 Case 4z Case 4s
- Case 2 Case 2
-- Case 1i/1c Case 3

8. Summary and Outlook

The analysis of different NAS-architectures demon-
strates that the traditional architecture (case 1 using a
cyclic PLC and the Client-Server-protocol) is slow but
robust (cf. Table 8). In contrast an architecture totally
based on “as the need arises” (case 3) is extremely fast
but also extremely dependent on the system’s load. The
surprise of this analysis is an unusual constellation: It
uses an interrupt based PLC, although the PLC-I/O is
using a Client-Server-protocol. In particular by dealing
with complex systems exhibiting a varied set of influ-
ences and possibly a changing system load, this architec-
ture does best.

1037

Table 8. Characteristic response time val-
ues without competition (top part of the
table) and relative increase comparing the
case with and without competition (5 sen-
sors, p=0.06)

Se

ns
or

s

C
as

e

A
ve

ra
ge

(m

s)

D
ev

ia
tio

n
(m

s)

M
in

im
um

(m

s)

M
ax

im
um

(m

s)

Sp
re

ad

(m
s)

1 1 i 32 3.67 24 40 17
1 1 c 36.9 4.32 31 46 16
1 2 28.5 2.87 24 33 10
1 3 18 0 18 18 1
1 4 i 22.5 2.29 19 26 8
1 4 c 26.5 2.29 23 30 8
5 1 no influence
5 2 5 % 25 % 33 % 1.1
5 3 21 % ∞ 89 % 16.0
5 4 i 0.9 % 3 % 31 % 1.0
5 4 c 0.1 % 2 %

no
 in

-
flu

en
ce

27 % 1.0

Future work will generalize the analysis by succes-

sively remove the simplifications introduced in section 3.
Moreover, the test conditions will be tightened. Hereunto
belongs for example failures in the system as well as
shared access of several PLCs to the same field-I/O in
the Client-Server-case (leading to a much better relative
performance of the Producer-Consumer-case). Other
than the competition of several sensors attached to the
same field-I/O, which has no effect on the minimum
response time, the competition between different PLCs
requesting the same field-I/O may have, as demonstrated
for example in [7].

Finally, it should be checked whether or not the as-
sumption of dealing with a robust network is true also
for Producer-Consumer-protocol or an immediate actua-
tor value output by the PLC-I/O (this assumption is yet
validated only for the Client-Server-protocol).

References

[1] J. Greifeneder and G. Frey: “Optimizing Quality of
Control in Networked Automation Systems using
Probabilistic Models”. Proc. 11th IEEE Interna-
tional Conference on Emerging Technologies and
Factory Automation (ETFA), Prague, Czech Re-
public, pp. 372–379, 2006.

[2] J. Jasperneite and P. Neumann: “Switched Ethernet
for Factory Communication”. Proc. 8th IEEE Int.
Conf. Emerging Technologies and Factory Automa-
tion (ETFA), Antibes, France, pp. 205–212, 2001.

[3] D. Miorandi and S. Vitturi: “Performance Analysis
of Producer/Consumer Protocols over IEEE 802.11
Wireless Links”. Proc. IEEE Int. Workshop on
Factory Communication Systems (WFCS), Vienna,
Austria, pp. 55–64, 2004.

[4] L. Liu and G. Frey: “Simulation Approach for
Evaluating Response Times in Networked Automa-
tion Systems”. Proc. 12th IEEE Int. Conf. Emerg-
ing Technologies and Factory Automation (ETFA),
Patras, Greece, pp. 1061–1068, 2007.

[5] F. Ridouard, J-L. Scharbarg and C. Fraboul: “Sto-
chastic network calculus for end-to-end delays dis-
tribution evaluation on an avionics switched
Ethernet”. Proc. 5th IEEE Int. Conf. Industrial In-
formatics (INDIN), Vienna, Austria, pp. 559–564,
2007.

[6] M. Kwiatkowska: “Model Checking for Probability
and Time: From Theory to Practice”. Invited Paper,
Proc. 18th Annual IEEE Symposium on Logic in
Computer Science (LICS), Ottawa, Canada, IEEE
Computer Society Press, pp. 351–360, 2003.

[7] J. Greifeneder and G. Frey: “DesLaNAS – a lan-
guage for describing Networked Automation Sys-
tems”. Proc. 12th IEEE International Conference
on Emerging Technologies and Factory Automa-
tion (ETFA), Patras, Greece, pp. 1053–1060, 2007.

[8] B. Wittenmark, K. J. Åström, K-E. Årzén: „Com-
puter Control: An Overview“ IFAC Professional
Brief. 2002.

[9] J. Greifeneder: “Formale Analyse des Zeitverhal-
tens Netzbasierter Automatisierungssysteme”. Dis-
sertation, Department of Electrical and Computer
Engineering, University of Kaiserslautern. Pub-
lished by Shaker Verlag, Aachen, 2007.

[10] J. Greifeneder and G. Frey: “Analyse des Antwort-
zeitverhaltens netzbasierter Automatisierungssys-
teme”, atp Automatisierungstechnische Praxis, Ol-
denbourg, Vol. 49(10), pp. 44–54, 2007.

[11] B. Denis, S. Ruel, J-M. Faure, G. Marsal and G.
Frey: “Measuring the Impact of Vertical Integration
on Response Times in Ethernet Fieldbuses.” Proc.
12th IEEE Int. Conf. Emerging Technologies and
Factory Automation (ETFA), Patras, Greece, pp.
352–359, 2007.

[12] J. Greifeneder, L. Liu and G. Frey: “Methods for
Analyzing Response Times in Networked Automa-
tion Systems”, Proc. 17th IFAC World Congress,
Seoul, South Korea, pp. 5113–5118, 2008.

[13] J. Greifeneder and G. Frey: “Probabilistic Timed
Automata for Modelling Networked Automation
Systems”, Proc. 1st IFAC Workshop on Depend-
able Control of Discrete Systems (DCDS), Cachan,
France, pp. 143–148, 2007.

1038

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

