

PROBABILISTIC TIMED AUTOMATA FOR MODELING
NETWORKED AUTOMATION SYSTEMS

Jürgen Greifeneder and Georg Frey

University of Kaiserslautern; Erwin-Schrödinger-Str. 12; 67663 Kaiserslautern; Germany
{greifeneder|frey}@eit.uni-kl.de

Abstract: For the formal analysis of dependability of Networked Automation Systems
(NAS) it is necessary to model the whole system first. Due to the probabilistic and dis-
tributed nature of the problem, a modular automata based approach is preferable for
modeling and analysis. In this paper a formal automata definition for the specific needs
of modeling NAS is given including continuous density distributions. For this model a
discretization procedure as well as a transformation of the resulting discrete model into
the input language of the probabilistic model checking software PRISM is presented. Fi-
nally an example is given, to illustrate the approach. The results of the automata based
analysis are compared to measurements. Copyright © 2007 IFAC

Keywords: Networked Automation Systems, Formal Verification, Modeling, Automata

1. INTRODUCTION

Modern automation systems consist of one or more
controllers, several sensors as well as actuators and a
network, connecting all these components using net-
work-IOs, switches, ... (Fig. 1). This configuration –
commonly called Networked Automation Systems
(NAS) – has several advantages, like sharing re-
sources (sensors, cables), the opportunity of cross
accessibility and the possibility to spatially separate
controllers from one another (on the one hand) as
well as from the process (on the other hand). Using
Ethernet leads to even further advantages like steadily
decreasing hardware prices, enduring improvements
in quality and amount of the offered technologies and
the possibility to negotiate barriers in communication
systems.

Networking, together with the decentralized and cycle
based computation integrates the areas of control,
communication and computation (C³-Systems, e.g.
[Report, 2000]) towards a system structure, which
exhibits the superposition of constant and cyclic de-
lays. Components’ stochastic failure rates lead to fur-
ther delays. A model representation to be used for
those systems therefore must be able to represent
times, stochastic distributions and deterministic se-
quences. Time thereby is twice important: First, it is
used as an indispensable input variable and second, it
is – besides of the pure functional analysis – the most

important aspect for analyzing dependability. To ad-
dress the latter one, a method must be developed,
which can process the NAS’ model structures and
return time- as well as probability based answers.

cyclic
requests

read

sensors+
actuators

IO2
answering
time: 2 ms

PLC1-IO

cycle time
17 ms

Inputsexecution

O
utputs

PLCPLC11
cycle time: 10 ms

w
rit

e

re
ad

cy
cl

ic
re

qu
es

ts

w
rit

e
IO1

sensors

ac
tu

at
or

s

IO4
IO12

S+A S+A

IO3

sensors actuators

network

read

PLC3-IO

cycle time:
17 ms

write

cy
cl

ic
re

qu
es

ts

PLCPLC33

PLCPLC22

cycle time:
11 ms

cycle time:
19 ms

PLC2-IO

...

13 ms

Fig. 1: Networked Automation System (NAS)

The rest of the paper is structured as follows. In the
next section a new type of probabilistic timed auto-
mata (PTA), created for the special needs in NAS, is
introduced. For this model a discretization procedure
as well as a transformation of the resulting discrete
model into the input language of the probabilistic
model checking (PMC, [Katoen, 2006]) software
PRISM [Kwiatkowska et al., 2002] is presented. In
section 3 an example is given, to illustrate the ap-
proach. The results of the PMC based analysis are
compared to measurements. The last section gives a
summary of the paper.

1st IFAC Workshop on Dependable Control of Discrete Systems (DCDS'07)
ENS Cachan, France - June 13-15, 2007

2. MODELING APPROACH

In order to find a model representation which covers
all possible behaviors of a NAS, it is important to first
define a description language, which reflects the en-
gineers structural thinking. In a second step (cf. sec-
tion 2.2) this will be transformed towards an automa-
ton model related to PTA. Due to computation and
memory limitations, this model can not be used di-
rectly, but must be discretized, to be used in Probabil-
istic Model Checking. This is done in the sections 2.3
and 2.4. Section 2.5 presents two examples for defin-
ing the initial state. Finally the transformation into the
used PMC-language PRISM is given in section 2.6.
This design process is illustrated in Fig. 2.

Modeling language (graphical model)

Continuous Automaton (cont. formal model)

Discrete Automaton (disc. formal model + graphical representation)

PRISM (programming language)

syntactical transformation

mathematical transformation

straight forward transformation

Fig. 2: Design Process

2.1. Description Language

In NAS the activation of a transition between two
distinct system states can be given in four basic ways
(cf. Fig. 3):
(1) A fixed time interval after which’s elapsing the

transition is activated, e.g. a fixed processing time.
Each state is allowed to have one and only one
outbound transition.

(2) A density distribution over time d(x), which gives
the probability for activation at a given time, e.g.
the transmission time for passing the network. As
in the first case, there is only one outbound transi-
tion allowed: It does not make sense to have two
density functions active at the same time. Note: A
condition of type (1) can be easily written as
d(x)=δ(te), where δ means the Kronecker-Symbol
(Dirac-Impulse) and te represents the activation
time. As it is not very convenient for formulating
conditions, this replacement is done later in the
transformation step, automatically.

(3) The activation is coupled to the occurrence of a
predefined situation (this can be understood as
event, even it is written as the occurrence of a
condition based on states), e.g. an IO sends a re-
quest or the PLC reads/writes values. There are no
two conditions active at the same time

(4) The activation occurs immediately but the choice
of path is of stochastic nature, e.g. the transmis-
sion will fail with a probability of 1%. The sum
over all probabilities obviously must add up to
one. Contrary to the types (1) to (3), the corre-
sponding state is of transient nature, i.e. no time
passes while being in this state. Therefore transi-
tion type (4) could be attached to each transition
directly (cf. Fig. 5).

Despite for type (4) there is no need to have an acti-
vated transition at any time, but there must be at least
one transition, which may become active. Besides the

possibility to arrange those basic types arbitrarily in
series, it is possible to use a mix of transitions of type
(3) together with type (2), respectively (1) (the mix of
(1) and (2) is not allowed; same for any arbitrary mix
together with (4)).

x:=0

d/dt (x) =1

x=5

(1) deterministic delay

x:=0

d/dt (x) =1

Switch idle

(3) deterministic condition

d/dt (x) =0

p1
(4) stochastic choice

p2

1-∑pi

d(x) = δ(te)

x:=0

d/dt (x) =1

d(x)

(2) stochastic delay

failure

Fig. 3: Basic transition types

As an example for an possible mix of transitions the
automaton on the left hand side of Fig. 4 shows a ma-
chine, which relocates from idle to working when the
“start”-button is pressed. The working process takes
5 ms and can be interrupted by pressing the “stop”-
button. The latter transition therefore is labeled by a
disjunction of transition type (1): t=5 and transition
type (3): stop.

execute

OS routine

dx
dt = 1

dy
dt = 1IRQ y:

=
0

d (y)

x=5 x:
=

0 write
dx
dt = 1 x=tw

x:
=

0 read
dx
dt = 1x:

=
0

x=trstart

x:
=

0 working
dx
dt = 1 t=5 ∨ stop x:

=
0 idle

dx
dt = 0

machinemachine

Fig. 4: Examples for states with mixed transition types

The automaton on the right hand side of Fig. 4 shows
a processor which first reads in some values, what
takes tr ms, executes them, what takes 5 ms, and fi-
nally writes out the results (tw ms). While the proces-
sor is in the execution state, an interrupt IRQ from the
Operating System may arrive, which interrupts the
execution and starts to run the corresponding OS rou-
tine. The time needed to finish this routine is given by
a distribution over time y. After finishing, the process
will be continued where it got interrupted (clock x
was not changed by the OS routine).

The most general transition type therefore may assess
(I) a condition which is disjuncted with a density dis-
tribution and (II) a probability vector (evaluating to a
set of successive states). Note: This resulting automa-
ton (cf. Fig. 5) is not able to choose in between dif-
ferent state-conditions and activate a corresponding
density function!

clock
action

c1 ∨ d1(x), p1

dx
dt = a cn ∨ dn(x), pn

...

Fig. 5: General transition type

2.2. Continuous Automaton

To formalize the graphical model, a continuous
automaton is used given by the following notation

A = (Z, Prob(Z(t=0)), X, X0, Xact, XR, D(X), L)

and defined over the set of sub-automata Ai (i=1, .., n)
given by

Ai = (Zi, Prob(Zi(t=0)), Xi, Xi
0, Xi

act, Xi
R, Wi, Vi,

Ci(Vi), Di(Xi), Li)

Zi is the set of states, Prob(Zi(t=0)): Zi → [0,1] the
initial state distribution, Xi is the set of clock vari-
ables, Xi

0: Xi(t=0) → ú+
0 the set of initial clock val-

ues, Xi
act: Zi → 2Xi the clocks’ activation function and

Xi
R the set of clocks’ reset function. Wi ⊆ Zi is the

output alphabet and Vi the input alphabet given by:
 n

i j
j=1
j i

V W
≠

⊆∪ (1)

Using this definition, the sub-automaton can react on
the occurrence of a predefined situation (deterministic
condition as discussed in section 2.1, case (3)) in the
complete system. This dependency (extended by ∅)
is described by the set of Boolean functions named
Ci(Vi) over the input alphabet. Di(Xi) is the set of
probability density functions, which is based on the
set of clocks Di(Xi): di(x) → ú+

0; and necessary to
model the transition types (1) and (2), respectively.
Finally, the transition relation is given by
Li: Zi × Di(Xi) × Ci(Vi) × Zi → [0,1] and represents
the description of the general transition type shown in
Fig. 5, where the probability is derived from attaching
a transition of type (4). As the validities of Ci(Vi) and
Di(Xi) can be understood as independent stochastic
events, Di(Xi) × Ci(Vi) builds a single probability
space. Prove: Consider a pure stochastic delay distri-
bution dk(x), cf. Fig. 3. Then the following must hold:

0

() 1k
t

d x dx
∞

=

=∫ (2)

Consequently, for a combination of C (ck1, ..., ckm)
and D (dk1, ..., dkm), the following must hold:

 { }
1 0

() 1
m

kj kj
j t

c d x dx
∞

= =

⎛ ⎞
∨ =⎜ ⎟

⎝ ⎠
∑ ∫ (3)

As Di(Xi) × Ci(Vi) is assumed to build a single prob-
ability space, it must be possible to convert the nota-
tion ckj∨dkj(x) into a density function dkj

*(x) which
satisfies equation (2). For that, please recall that if
any of the conditions ckj is activated, the correspond-
ing transition is defined to be fired immediately. The
conditions ck1, ..., ckm become true at time te,k1 ... te,km,
te,kj∈[0,∞); that is: each condition eventually becomes
true. The minimum over te,k1 ... te,km shall be called te.
Then the following definition for dkj

*(x) results (qed.):

,

,

*
, , ,

, ,
1 0

 () for

() 0 for and

 1 () () for an
e k

kj e k

kj e k e kj e k

tm

ko e k e k
o t

d x x t

d x x t t t

d t dt t x tδ
= =

<

= ≥ ≠

⎧ ⎫⎛ ⎞⎪ ⎪− ⋅ ≥⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∫ , ,d e kj e kt t

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪ =⎪
⎪⎩

(4)

Obviously: as long as none of the conditions is satis-
fied (x < te,k = min(te,k1, ..., te,km)) the activation
probability for the jth transition of state k (i.e., the
probability that this transition got activated) can be
determined to:

0

() ()
x

kj kjp x d d
ξ

ξ ξ
=

= ∫ (5)

Note: This continuous automaton is more expressive
than necessary in terms of the description language
proposed in section 2.1.

2.3. Discrete Automaton

The discrete automaton to be used describes a system,
controlled by an external clock impulse with pulse
length Δt. The formal notation is the following:

A={Ai}, i=1...n, with

Ai = {Zpi, Zti, zpi
0, Ti, Vi, Wi, Xi, xi

0, fi, ci, pi}

The product automaton A has feedback automaton
structure, i.e. each sub-automaton Ai may know the
actual state of the complete automaton. Note: While
not mentioned explicitly, the index i, indicating the ith
sub-automaton, is neglected in the rest of this subsec-
tion for reasons of readability. The different elements
of each of the sub-automata are given as follows:

Zp set of permanent (i.t.s.o non-transient) states

Zt set of transient states with Zt ∩ Zp = ∅

zp
0 inital state distribution function. Mapping asso-

ciating each of the permanent states with a prob-
ability of being the initial state (active at t=0).
zp

0: z∈Zp→[0,1] with ∑z∈Zp (zp
0) = 1.

T set of transitions T⊆((Zp×Zt)∩(Zt×Zp)). T con-
tains all possible transitions between states
where only transitions between elements of the
different state sets are allowed (bipartite graph).

V set of Boolean input variables, cf. equation (1).

W set of Boolean output variables with Wi⊆Zpi

X set of local integer clocks

x0 mapping that assigns an initial value to each
local clock. x0: x∈X→ù0, ∀x∈X

f clock modification function that assigns to each
transition from a transient state to a permanent
one a vector scaling for each clock whether it is
incremented by one (inc), reset (res) or not
changed at all (-). f: t∈T∩(Zt×Zp)→(inc, res, -)|X|

c transition condition. Mapping c: t∈T∩(Zp×Zt)
→C with C being the set of all Boolean func-
tions of the form c=cl∨cg where cl is a Boolean
function over the set of input variables V and cg
is a Boolean function over the set of clock
guards, where a clock guard is a relation of the
form x◊a with x∈X, a∈ù+ and ◊∈{=,≤,<}.

p transition probability. Mapping p: t∈T∩(Zp×Zt)
→[0,1].

Fig. 6 shows the structure of the discrete automaton
for one specific state zk ∈ Z. Transient states (nor-
mally shown as shaded squares) with only one outgo-
ing transition (p=1) are omitted from the graphical
representation. The clock modification is then noted
at the remaining arc.

For the probabilities associated with the transitions
from a specific transient state to all the successive
permanent ones, the following condition must hold:

,

1 ,kj l
l

p k j= ∀Σ (6)

ck1

zk

(zk+1)1,1

(zk+1)1,2

(zk+1) 1,h

…

pk1,1

pk1,2

pk1,h

ckm

…

…

ckm+1= ¬ (∨ ckj)
j=1

m

x k
:=

0
in

c(
x k

)

{..
.}

{..
.}

{..
.}

Fig. 6: Discrete Automaton

For the conditions at one state zk ∈ Z the following
must hold:
1. There are no two conditions active at the same

time:

, [1..];
kl kj

l j m l j
c c false

∈ ≠

∧ =∀ (7)

2. The disjunction of all conditions must cover the
total state space:

[1.. 1]

kj
j m

c true
∀ ∈ +

=∨ (8)

The latter condition was derived from the following
consideration: If there were no condition active at one
time, the automaton would just increment the counter
when the clock impulse arrives. For the implementa-
tion, however, it is easier to fire a transition synchro-
nously with each clock impulse. That’s why one more
transition, looping back on the state, is introduced.
The corresponding condition ck(m+1) is thereby defined
as the complement over all other ckjs:

1
1

c c
m

km kj
j

+
=

⎛ ⎞
= ¬⎜ ⎟

⎝ ⎠
∨ (9)

Together, this leads to the following semantic: If Ai is
in a permanent state z∈ZPi, it waits for the sync-pulse
at Δt; now, all outgoing transition conditions are
evaluated (exactly one is true). This leads to a tran-
sient state. From this state one of the following per-
manent states is selected according to the probabili-
ties p. Finally, the clocks are modified with reaching
the permanent state.

Note: David Parker, one of PRISM’s developers gave
in his PhD [Parker, 2002] the following sub-
automata: Ai={Si, S0i, Pi}, using Si as the set of state
of the ith sub-automaton, S0i for the set of initial states
and Pi being a subset of the automaton’s transition
matrix P: S × S → [0,1], which assigns a probability
value to all the transitions, based on a mix of condi-
tions and probability values defined also in his work.
It is easy to transform this automaton structure into
the one introduced here. The discrete structure pre-
sented here is a way for describing the link between
an intuitive engineering model and the PRISM im-
plementation. Parker’s structure on the other hand is
much more useful, if one and the same structure is
used to describe different kinds of Markov models.

2.4. From continuous to discrete model

After the discretization, the model does no longer
represent the exact occurrence time of an event, but
only the fact that an event has occurred within the last
time step. Thereby the correct order of two events
occurring in the same time step is neglected (in the

sense of masked) by the model structure. This reduces
the size of the automaton drastically. Note: [Alur and
Dill, 1994] are introducing digital clocks. However,
the point in time of the events (and therefore the dis-
tance in between several events) is still a dense time
and will be projected to the discrete axis afterwards,
while the presented model uses discrete times di-
rectly.

Transforming from continuous to discrete, it is impor-
tant to know that not all the elements are defined in
the same way. This is because the discrete automaton
was created to best fit the PRISM coding language,
while the continuous automaton was created to best
describe the behavior of a NAS. The nice thing is that
Zpi=Zi, Wi=Wi, Vi=Vi, zpi

0=Prob(Zi(t=0)) and Xi=Xi
(despite the fact that the clocks in Xi are defined over
ú0

+ and the ones in Xi over ù0).

The reason for the differences in the remaining sets
and functions is that the continuous model separates
strictly in between conditions and times, while the
PRISM structure does not. From there it follows that
Ci(Vi), Di(Xi) and Li of the continuous model have to
be evaluated to create the discrete Ti, ci, pi and in this
run also the set of transient states Zti. For each transi-
tion of each state in Zi the following has to be done:
1. Initialize the counter variable for the state.
2. If dkj(x)≡0, then the discrete condition ckj equals

the continuous one (while the corresponding
probability pkj=1).

3. Otherwise for all discrete time steps, where the
integral of dkj

*(x) over the corresponding time
frame q⋅Δt

(1)

*

(1)
*

1

1

() dt for q 2

() 1() dt for q>2
()

q t

kj
q t

q t
kj

kj q
q t

kj
o

d t

p x q
d t

p x o

ε

ε

+ ⋅Δ −

⋅Δ

+ ⋅Δ −

−
⋅Δ

=

⎧
≤⎪

⎪⎪= = ⎨
⋅⎪

⎪ =⎪⎩

∫

∫
∏

 (10)

 is larger than zero, a transition from this perma-
nent to a transient state is build, which’s discrete
condition c equals the continuous condition dis-
juncted with the counter variable’s value:
c=cl∨(x=q). The transient state has two outgoing
transitions as shown in Fig. 7: The first one con-
nects the transient state with the permanent one
given by the continuous transition. The probability
of this transition equals pkj(q). As the probability
sum of all outbounding transitions of an transient
state must add up to one, the second transition
connects from the transient state back to the origi-
nal state and increases the counter.

4. If the value given by Li (for the transition from
this state to another state), is not 1 (i.e. the transi-
tion is taken only with a probability p<1), then the
values of pkj(q) have to be multiplied with this
probability.

pkj(q)
inc(x)

c

1- pkj(q)

Fig. 7: Each transient state needs a probability sum of 1

Then, for each state the following has to be done:
1. If there are two transitions labeled with the same

condition, they have to be merged. Note: This
should not be necessary!

2. A self loop around the state must be initiated,
which is activated, if and only if no other transi-
tion is activated. The clock modification for this
transition is set to “inc(x)”.

3. The clock modifications of all other transitions
descending from this state are set according to Xi

R
and Xi

act.
Finally, the initial state distribution together with the
set of initial clock values has to be transformed into
the discrete initial conditions. In principle, this is just
a mapping from the continuous to the discrete set,
despite the fact that the time in the discrete case is no
longer continuous and therefore the corresponding
density values for each (state, counter) can be re-
ceived by integrating over the (state, time) of the con-
tinuous set for each time step’s interval (which indeed
transforms the density function to a discrete set of
probability values).

2.5. The initial state density function

The creation of the initial state density function will
be discussed on the basis of two typical NAS-
examples, namely a PLC and a switch failure.

A PLC has three states: read, execute and write. The
forth and fifth state, waiting for the cycle time to
elapse and “operating system”, are added to the exe-
cution part, as for analyzing times, only the read and
write states are of interest. For the initial state, the
assumption is used that all possible times are equally
likely. Let’s take tcyc for the cycle time, tw for the
write time and tr for the read time. Then, the probabil-
ity density that the clock x equals a specific time
value in the beginning equals 1/tcyc. The probability
that the PLC is currently writing, therefore is tw/tcyc;
tr/tcyc for reading and (1-tr-tw)/tcyc for the execution.
Fig. 8 shows the continuous and its corresponding
discrete automaton. For reasons of feasibility, the
assumption was made that tw=tr=Δt. Defining td to-
wards the next integer number from tcyc divided by Δt,
then, the (initial) probability for the discrete counter
variable to represent a given value is 1/td. The prob-
ability of being in the read (or in the write) state
therefore is 1/td, the one for the execution state: 1-2/td.
The density distribution, for both, a continuous and a
discrete time axis, is given in Fig. 10a.

read execute
dx
dt = 1 dx

dt = 1
x≥tr+tw x:

=
0

inc(x)

write
dx
dt = 1

x≥tcyc x≥tw

read executex=tr+tw

re
s

writex=tcyc x=tw{-
}

{-
}

x<tcyc

Fig. 8: Continuous and discrete automaton of the PLC module

The switch failure is modeled as follows: A failure
might occur with a probability pFc(x) and will then
last for Ft·Δt. It is possible that another failure occurs

immediately afterwards. The corresponding automata
for the continuous as well as for the discrete case
(Note: pFd is a constant value) are shown in Fig. 9,
while the associated density function for the switch
failure is shown in Fig. 10b. The initial probabilities
and clock values are determined as follows (Note: All
initial clock values are equally likely):
 0

(t=0) p
1Prob(OK) z ()

1 (1)
d

t d

pSwFOK
F pSwF

−
= =

+ − ⋅
 (11)

 { }0
(t=0) p (t=0)Prob(failure) z (failure) 1 Prob(OK)= = − (12)

 { }0 | 0 ,i tX x x F x= ≤ < ∈\ (13)
 { }0 | 0 ,i tx x x F x= ≤ < ∈` (14)

OK failure
dx
dt = 0 dx

dt = 1

pFc(x) x:
=

0

x:
=

0

x:
=

0

d(x)=δ(Ft)·pFc(x-Ft)

d(x)=δ(Ft)·(1-pFc(x-Ft))

OK failure
pFd {-

}

re
s

inc(x)

x=Ft

x<Ftre
s

pFd

1-pFd

true

{-
}

1-pFd

Fig. 9: Continuous and discrete automaton of a failure module

ln(pFc)

x

di(x)

x
Δt 3ΔtΔt tcyc

w
rit

e
re

ad

≈
≈

execute

a) b)
Δt=tw=tr

Fig. 10: Probability density functions

2.6. Transformation into PRISM Language

The transformation of the automaton into PRISM
language is straight forward: For each sub-automaton
a module of the following form is generated:
module <modname>
 <statevar>: [<range>] init <initial_s>;
 <countervar>: [<range>] init <initial_c>;
 [Dt] <ck1> & <zk> → <pk11>:(<zk+1,1,1>)&(<fk11>) +
<pk12>:(<zk+1,1,2>)&(<fk12>) +<pk12>: ... ;
 [Dt] <ck2> & <zk> → <pk21>:(<zk+1,2,1>)&(<fk21>) + ;
...
 [Dt] <c(k+1)1> & <z(k+1)> → <pk11>:(<zk+2,1,1>) &
 (f (k+1)11) + ;
...
endmodule

<modname> thereby is the name of the module, <state-
var> is the identification variable of the state (there
might be several <statevar>s), <initial_s> can be used to
assign an initial value to <statevar>, <countervar> is the
implementation of the clock x, and <inital_c> the as-
signment of an initial clock value, [Dt] means that in
each of the modules, whose command lines are indi-
cated with [Dt] the conditions (6) and (8) must be ful-
filled. <ck1> means the condition c1 of the state zk and
<zk> is to indicate that this condition is valid, when
the automaton is in the state zk. “→” symbolizes the
firing of the transition, <pk11> equals pk1,1 (1st prob-
ability of the 1st transition of the state zk), <zk+1,2,1>
means the state (zk+1)2,1 and <fk11> is the clock modi-
fication function fk1,1.

If the initial state distribution has more than one non-
zero element, the initial state must be determined
first. This can either be done using the init specifica-
tion of PRISM (which induces some problems) or by
introducing a pre-process to the affected modules that
maps a probability to each of the possible states
(cf. [Greifeneder and Frey, 2006]).

3. CASE STUDY

The example contains a PLC, its PLC-IO, a wireless
LAN, a sensor, an actuator and a field-IO (cf.Fig. 11).

PLC-
IO

cycle time:
17ms

Inputs

E
xe

cu
tio

n

Outputs

PLCPLC

cycle time:
10ms

read

field-IOwrite

(W)LAN

Delay:
28%: 2ms
71%: 3ms
1%: 4ms

cyclic
requests

sensor
values

sensors

actuators

answer time:
2ms

0

5

10

15

20

1.3 1.8 2.3 2.8 3.3 3.8

Delay=?

Fig. 11: Structure of the case study

To be determined is the delay between a sensor’s ac-
tivation and the reaction at a corresponding actuator.
To do so, the following process must be supervised
(cf. Fig. 12): After the input got triggered, some time
may pass until the next request from the PLC-IO ar-
rives at the field-IO. Afterwards, the answer is gener-
ated and sent back through the network. Then, the
second synchronization – this time on the cycle of the
PLC – is necessary. After being executed by the PLC,
the result must wait for the next PLC-IO send-time
(this is not any more a cycle based function, but only
a function of time being passed since the first syn-
chronization on the PLC-IO-cycle and the cycle
time). Finally, the result must pass the network and be
processed by the field-IO / the actuator.

PLCPLC--IOIO

t

InputInput

PLCPLC

executionexecution
constant

delay

fieldfield--IOIO
constant

delay

0

5

10

15

20

1.3 1.8 2.3 2.8 3.3 3.8

NetworkNetwork

0

5

10

15

20

1.3 1.8 2.3 2.8 3.3 3.8

NetworkNetwork

0

5

10

15

20

1.3 1.8 2.3 2.8 3.3 3.8

NetworkNetwork fieldfield--IOIO
constant

delay

Fig. 12: Signal tracking trajectory

Analyzing the response time of this system leads to
the distribution shown in Fig. 13. The value of 4.5%
at time 50 ms means that the probability of a response
being delayed in between 49 and 50 ms (discretiza-
tion step width = 1 ms) equals 4.5%. The second line
of the graph (rombi) shows the corresponding distri-
bution arisen from measurements (200 values). Note:
All measurements in this paper had to be shifted by a
time offset of +3 ms. This offset is assumed to be
caused by a systematic failure in the measuring
method and therefore neglected.

0%

1%

2%

3%

4%

5%

0 10 20 30 40 50 60 70

Messwerte
PRISM (10-17)

probability

measurements
PRISM (10-17)

delay
in ms

Fig. 13: Response time distribution of the case study (meas-
urements and PMC-results)

In a second experiment, the cycle times of the PLC
and its IO got changed, so the PLC had a cycle of
17 ms and the PLC-IO of 10 ms. By doing so, it is
guaranteed that the PLC always has new values. Un-
fortunately, the medium delay rises from 41.9 to
43.4 ms as shown in Fig. 14.

0%

1%

2%

3%

4%

5%

6%

7%

0 10 20 30 40 50 60

measurements
PRISM (17-10)

probability

delay
in ms

Fig. 14: Response time distribution for changed cycle times

In both experiments, the cyclic superposition did re-
sult in the demonstrated distributions. Therefore, a
third experiment was done, assuming a really fast
PLC (1 ms), coupled with the maximum the authors
could do for the (serial interface based) sending rate
of the PLC-IO (3 ms). The corresponding distribution
is shown in Fig. 15. While the PLC itself only has a
constant influence of 1 ms, PLC-IO and network are
the two sources of the distribution’s shape.

0%

5%

10%

15%

20%

25%

30%

35%

0 5 10 15

measurements
PRISM (1-3)

probability

delay
in ms

Fig. 15: Response times distributions for a fast PLC

This implies that in the first two cases the network
only causes a small part of the delay. However, the
network enables architectures with a lot of synchroni-
zation delays.

4. SUMMARY

In this paper a formal automaton definition for model-
ing Networked Automation Systems (NAS) is given,
followed by the corresponding discrete automaton
and the affiliating transformation. The discrete
automaton can easily be re-written in the PRISM cod-
ing language, which can be used for probabilistic
model checking of NAS. The comparison of results
from PMC and measured values has lead to an aston-
ishing compliance, which allows the generalization of
the results by adding different not really measurable
effects (like stochastic failures) to the model.

REFERENCES

Alur, R. and D. Dill: A theory of timed automaton. Theoretical
Computer Science, 126(2): 183-235, 1994.

Greifeneder, J. and G. Frey: Dependability analysis of networked
automation systems by probabilistic delay time analysis. Proc.
of IFAC incom, St. Etienne, France, Vol. 1 pp. 269-274, 2006.

Katoen, J-P.: “Stochastic Model Checking”, in Stochastic Hybrid
Systems, ed. C.G. Cassandras and J. Lygeros, Control Engi-
neering Series, Taylor & Francis, Boca Raton, pp. 79–107,
2006.

Kwiatkowska, M., G. Norman and D. Parker: PRISM: Probabilistic
symbolic model checker. In TOOLS’02, LNCS, vol. 2324, pp.
200–204, Springer, 2002.

Parker, D. Implementation of Symbolic Model Checking for Prob-
abilistic Systems. Ph.D., University of Birmingham, 2002.

Report on the workshop on future and emerging control systems
organized by unit E1, European Commission, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

