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Abstract: For the formal analysis of dependability of Networked Automation Systems 
(NAS) it is necessary to model the whole system first. Due to the probabilistic and dis-
tributed nature of the problem, a modular automata based approach is preferable for 
modeling and analysis. In this paper a formal automata definition for the specific needs 
of modeling NAS is given including continuous density distributions. For this model a 
discretization procedure as well as a transformation of the resulting discrete model into 
the input language of the probabilistic model checking software PRISM is presented. Fi-
nally an example is given, to illustrate the approach. The results of the automata based 
analysis are compared to measurements. Copyright © 2007 IFAC 
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1. INTRODUCTION 

Modern automation systems consist of one or more 
controllers, several sensors as well as actuators and a 
network, connecting all these components using net-
work-IOs, switches, ... (Fig. 1). This configuration – 
commonly called Networked Automation Systems 
(NAS) – has several advantages, like sharing re-
sources (sensors, cables), the opportunity of cross 
accessibility and the possibility to spatially separate 
controllers from one another (on the one hand) as 
well as from the process (on the other hand). Using 
Ethernet leads to even further advantages like steadily 
decreasing hardware prices, enduring improvements 
in quality and amount of the offered technologies and 
the possibility to negotiate barriers in communication 
systems. 

Networking, together with the decentralized and cycle 
based computation integrates the areas of control, 
communication and computation (C³-Systems, e.g. 
[Report, 2000]) towards a system structure, which 
exhibits the superposition of constant and cyclic de-
lays. Components’ stochastic failure rates lead to fur-
ther delays. A model representation to be used for 
those systems therefore must be able to represent 
times, stochastic distributions and deterministic se-
quences. Time thereby is twice important: First, it is 
used as an indispensable input variable and second, it 
is – besides of the pure functional analysis – the most 

important aspect for analyzing dependability. To ad-
dress the latter one, a method must be developed, 
which can process the NAS’ model structures and 
return time- as well as probability based answers.  
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Fig. 1: Networked Automation System (NAS) 

The rest of the paper is structured as follows. In the 
next section a new type of probabilistic timed auto-
mata (PTA), created for the special needs in NAS, is 
introduced. For this model a discretization procedure 
as well as a transformation of the resulting discrete 
model into the input language of the probabilistic 
model checking (PMC, [Katoen, 2006]) software 
PRISM [Kwiatkowska et al., 2002] is presented. In 
section 3 an example is given, to illustrate the ap-
proach. The results of the PMC based analysis are 
compared to measurements. The last section gives a 
summary of the paper. 
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2. MODELING APPROACH 

In order to find a model representation which covers 
all possible behaviors of a NAS, it is important to first 
define a description language, which reflects the en-
gineers structural thinking. In a second step (cf. sec-
tion 2.2) this will be transformed towards an automa-
ton model related to PTA. Due to computation and 
memory limitations, this model can not be used di-
rectly, but must be discretized, to be used in Probabil-
istic Model Checking. This is done in the sections 2.3 
and 2.4. Section 2.5 presents two examples for defin-
ing the initial state. Finally the transformation into the 
used PMC-language PRISM is given in section 2.6. 
This design process is illustrated in Fig. 2.  
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Fig. 2: Design Process 

2.1. Description Language 

In NAS the activation of a transition between two 
distinct system states can be given in four basic ways 
(cf. Fig. 3):  
(1) A fixed time interval after which’s elapsing the 

transition is activated, e.g. a fixed processing time. 
Each state is allowed to have one and only one 
outbound transition. 

(2)  A density distribution over time d(x), which gives 
the probability for activation at a given time, e.g. 
the transmission time for passing the network. As 
in the first case, there is only one outbound transi-
tion allowed: It does not make sense to have two 
density functions active at the same time. Note: A 
condition of type (1) can be easily written as 
d(x)=δ(te), where δ  means the Kronecker-Symbol 
(Dirac-Impulse) and te represents the activation 
time. As it is not very convenient for formulating 
conditions, this replacement is done later in the 
transformation step, automatically. 

(3) The activation is coupled to the occurrence of a 
predefined situation (this can be understood as 
event, even it is written as the occurrence of a 
condition based on states), e.g. an IO sends a re-
quest or the PLC reads/writes values. There are no 
two conditions active at the same time  

(4) The activation occurs immediately but the choice 
of path is of stochastic nature, e.g. the transmis-
sion will fail with a probability of 1%. The sum 
over all probabilities obviously must add up to 
one. Contrary to the types (1) to (3), the corre-
sponding state is of transient nature, i.e. no time 
passes while being in this state. Therefore transi-
tion type (4) could be attached to each transition 
directly (cf. Fig. 5).  

Despite for type (4) there is no need to have an acti-
vated transition at any time, but there must be at least 
one transition, which may become active. Besides the 

possibility to arrange those basic types arbitrarily in 
series, it is possible to use a mix of transitions of type 
(3) together with type (2), respectively (1) (the mix of 
(1) and (2) is not allowed; same for any arbitrary mix 
together with (4)). 

x:=0

d/dt (x) =1

x=5

(1) deterministic delay

x:=0

d/dt (x) =1

Switch idle

(3) deterministic condition

d/dt (x) =0

p1
(4) stochastic choice

p2

1-∑pi

d(x) = δ(te)

x:=0

d/dt (x) =1

d(x)

(2) stochastic delay

failure

 
Fig. 3: Basic transition types 

As an example for an possible mix of transitions the 
automaton on the left hand side of Fig. 4 shows a ma-
chine, which relocates from idle to working when the 
“start”-button is pressed. The working process takes 
5 ms and can be interrupted by pressing the “stop”-
button. The latter transition therefore is labeled by a 
disjunction of transition type (1): t=5 and transition 
type (3): stop.  
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Fig. 4: Examples for states with mixed transition types 

The automaton on the right hand side of Fig. 4 shows 
a processor which first reads in some values, what 
takes tr ms, executes them, what takes 5 ms, and fi-
nally writes out the results (tw ms). While the proces-
sor is in the execution state, an interrupt IRQ from the 
Operating System may arrive, which interrupts the 
execution and starts to run the corresponding OS rou-
tine. The time needed to finish this routine is given by 
a distribution over time y. After finishing, the process 
will be continued where it got interrupted (clock x 
was not changed by the OS routine). 

The most general transition type therefore may assess 
(I) a condition which is disjuncted with a density dis-
tribution and (II) a probability vector (evaluating to a 
set of successive states). Note: This resulting automa-
ton (cf. Fig. 5) is not able to choose in between dif-
ferent state-conditions and activate a corresponding 
density function! 
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Fig. 5: General transition type 

2.2. Continuous Automaton 

To formalize the graphical model, a continuous 
automaton is used given by the following notation 

A = (Z, Prob(Z(t=0)), X, X0, Xact, XR, D(X), L) 

and defined over the set of sub-automata Ai (i=1, .., n) 
given by 

Ai = (Zi, Prob(Zi(t=0)), Xi, Xi
0, Xi

act, Xi
R, Wi, Vi, 

Ci(Vi), Di(Xi), Li) 



Zi is the set of states, Prob(Zi(t=0)): Zi → [0,1] the 
initial state distribution, Xi is the set of clock vari-
ables, Xi

0: Xi(t=0) → ú+
0 the set of initial clock val-

ues, Xi
act: Zi → 2Xi the clocks’ activation function and 

Xi
R the set of clocks’ reset function. Wi ⊆ Zi is the 

output alphabet and Vi the input alphabet given by: 
 n

i j
j=1
j i

V W
≠

⊆∪  (1) 

Using this definition, the sub-automaton can react on 
the occurrence of a predefined situation (deterministic 
condition as discussed in section 2.1, case (3)) in the 
complete system. This dependency (extended by ∅) 
is described by the set of Boolean functions named 
Ci(Vi) over the input alphabet. Di(Xi) is the set of 
probability density functions, which is based on the 
set of clocks Di(Xi): di(x) → ú+

0; and necessary to 
model the transition types (1) and (2), respectively. 
Finally, the transition relation is given by 
Li: Zi × Di(Xi) × Ci(Vi) × Zi → [0,1] and represents 
the description of the general transition type shown in 
Fig. 5, where the probability is derived from attaching 
a transition of type (4). As the validities of Ci(Vi) and 
Di(Xi) can be understood as independent stochastic 
events, Di(Xi) × Ci(Vi) builds a single probability 
space. Prove: Consider a pure stochastic delay distri-
bution dk(x), cf. Fig. 3. Then the following must hold: 
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Consequently, for a combination of C (ck1, ..., ckm) 
and D (dk1, ..., dkm), the following must hold: 
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As Di(Xi) × Ci(Vi) is assumed to build a single prob-
ability space, it must be possible to convert the nota-
tion ckj∨dkj(x) into a density function dkj

*(x) which 
satisfies equation (2). For that, please recall that if 
any of the conditions ckj is activated, the correspond-
ing transition is defined to be fired immediately. The 
conditions ck1, ..., ckm become true at time te,k1 ... te,km, 
te,kj∈[0,∞); that is: each condition eventually becomes 
true. The minimum over te,k1 ... te,km shall be called te. 
Then the following definition for dkj

*(x) results (qed.): 
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Obviously: as long as none of the conditions is satis-
fied ( x < te,k = min(te,k1, ..., te,km) ) the activation 
probability for the jth transition of state k (i.e., the 
probability that this transition got activated) can be 
determined to: 
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( ) ( )
x

kj kjp x d d
ξ

ξ ξ
=

= ∫  (5) 

Note: This continuous automaton is more expressive 
than necessary in terms of the description language 
proposed in section 2.1.  

2.3. Discrete Automaton 

The discrete automaton to be used describes a system, 
controlled by an external clock impulse with pulse 
length Δt. The formal notation is the following: 

A={Ai}, i=1...n, with 

Ai = {Zpi, Zti, zpi
0, Ti, Vi, Wi, Xi, xi

0, fi, ci, pi} 

The product automaton A has feedback automaton 
structure, i.e. each sub-automaton Ai may know the 
actual state of the complete automaton. Note: While 
not mentioned explicitly, the index i, indicating the ith 
sub-automaton, is neglected in the rest of this subsec-
tion for reasons of readability. The different elements 
of each of the sub-automata are given as follows: 

Zp set of permanent (i.t.s.o non-transient) states 

Zt set of transient states with Zt ∩ Zp = ∅ 

zp
0 inital state distribution function. Mapping asso-

ciating each of the permanent states with a prob-
ability of being the initial state (active at t=0). 
zp

0: z∈Zp→[0,1] with ∑z∈Zp (zp
0) = 1. 

T set of transitions T⊆((Zp×Zt)∩(Zt×Zp)). T con-
tains all possible transitions between states 
where only transitions between elements of the 
different state sets are allowed (bipartite graph). 

V set of Boolean input variables, cf. equation (1). 

W set of Boolean output variables with Wi⊆Zpi 

X set of local integer clocks 

x0 mapping that assigns an initial value to each 
local clock. x0: x∈X→ù0, ∀x∈X 

f clock modification function that assigns to each 
transition from a transient state to a permanent 
one a vector scaling for each clock whether it is 
incremented by one (inc), reset (res) or not 
changed at all (-). f: t∈T∩(Zt×Zp)→(inc, res, -)|X| 

c transition condition. Mapping c: t∈T∩(Zp×Zt) 
→C with C being the set of all Boolean func-
tions of the form c=cl∨cg where cl is a Boolean 
function over the set of input variables V and cg 
is a Boolean function over the set of clock 
guards, where a clock guard is a relation of the 
form x◊a with x∈X, a∈ù+ and ◊∈{=,≤,<}. 

p transition probability. Mapping p: t∈T∩(Zp×Zt) 
→[0,1].  

Fig. 6 shows the structure of the discrete automaton 
for one specific state zk ∈ Z. Transient states (nor-
mally shown as shaded squares) with only one outgo-
ing transition (p=1) are omitted from the graphical 
representation. The clock modification is then noted 
at the remaining arc. 

For the probabilities associated with the transitions 
from a specific transient state to all the successive 
permanent ones, the following condition must hold: 
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Fig. 6: Discrete Automaton 

For the conditions at one state zk ∈ Z the following 
must hold: 
1. There are no two conditions active at the same 

time: 
 

, [1.. ];
kl kj

l j m l j
c c false

∈ ≠

∧ =∀  (7) 

2. The disjunction of all conditions must cover the 
total state space:  
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The latter condition was derived from the following 
consideration: If there were no condition active at one 
time, the automaton would just increment the counter 
when the clock impulse arrives. For the implementa-
tion, however, it is easier to fire a transition synchro-
nously with each clock impulse. That’s why one more 
transition, looping back on the state, is introduced. 
The corresponding condition ck(m+1) is thereby defined 
as the complement over all other ckjs: 
 

1
1

c  c
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km kj
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Together, this leads to the following semantic: If Ai is 
in a permanent state z∈ZPi, it waits for the sync-pulse 
at Δt; now, all outgoing transition conditions are 
evaluated (exactly one is true). This leads to a tran-
sient state. From this state one of the following per-
manent states is selected according to the probabili-
ties p. Finally, the clocks are modified with reaching 
the permanent state.  

Note: David Parker, one of PRISM’s developers gave 
in his PhD [Parker, 2002] the following sub-
automata: Ai={Si, S0i, Pi}, using Si as the set of state 
of the ith sub-automaton, S0i for the set of initial states 
and Pi being a subset of the automaton’s transition 
matrix P: S × S → [0,1], which assigns a probability 
value to all the transitions, based on a mix of condi-
tions and probability values defined also in his work. 
It is easy to transform this automaton structure into 
the one introduced here. The discrete structure pre-
sented here is a way for describing the link between 
an intuitive engineering model and the PRISM im-
plementation. Parker’s structure on the other hand is 
much more useful, if one and the same structure is 
used to describe different kinds of Markov models. 

2.4. From continuous to discrete model 

After the discretization, the model does no longer 
represent the exact occurrence time of an event, but 
only the fact that an event has occurred within the last 
time step. Thereby the correct order of two events 
occurring in the same time step is neglected (in the 

sense of masked) by the model structure. This reduces 
the size of the automaton drastically. Note: [Alur and 
Dill, 1994] are introducing digital clocks. However, 
the point in time of the events (and therefore the dis-
tance in between several events) is still a dense time 
and will be projected to the discrete axis afterwards, 
while the presented model uses discrete times di-
rectly. 

Transforming from continuous to discrete, it is impor-
tant to know that not all the elements are defined in 
the same way. This is because the discrete automaton 
was created to best fit the PRISM coding language, 
while the continuous automaton was created to best 
describe the behavior of a NAS. The nice thing is that 
Zpi=Zi, Wi=Wi, Vi=Vi, zpi

0=Prob(Zi(t=0)) and Xi=Xi 
(despite the fact that the clocks in Xi are defined over 
ú0

+ and the ones in Xi over ù0).  

The reason for the differences in the remaining sets 
and functions is that the continuous model separates 
strictly in between conditions and times, while the 
PRISM structure does not. From there it follows that 
Ci(Vi), Di(Xi) and Li of the continuous model have to 
be evaluated to create the discrete Ti, ci, pi and in this 
run also the set of transient states Zti. For each transi-
tion of each state in Zi the following has to be done: 
1. Initialize the counter variable for the state. 
2. If dkj(x)≡0, then the discrete condition ckj equals 

the continuous one (while the corresponding 
probability pkj=1).  

3. Otherwise for all discrete time steps, where the 
integral of dkj

*(x) over the corresponding time 
frame q⋅Δt 
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 is larger than zero, a transition from this perma-
nent to a transient state is build, which’s discrete 
condition c equals the continuous condition dis-
juncted with the counter variable’s value: 
c=cl∨(x=q). The transient state has two outgoing 
transitions as shown in Fig. 7: The first one con-
nects the transient state with the permanent one 
given by the continuous transition. The probability 
of this transition equals pkj(q). As the probability 
sum of all outbounding transitions of an transient 
state must add up to one, the second transition 
connects from the transient state back to the origi-
nal state and increases the counter. 

4. If the value given by Li (for the transition from 
this state to another state), is not 1 (i.e. the transi-
tion is taken only with a probability p<1), then the 
values of pkj(q) have to be multiplied with this 
probability. 

pkj(q)
inc(x)

c

1- pkj(q)
 

Fig. 7: Each transient state needs a probability sum of 1 



Then, for each state the following has to be done: 
1. If there are two transitions labeled with the same 

condition, they have to be merged. Note: This 
should not be necessary!  

2. A self loop around the state must be initiated, 
which is activated, if and only if no other transi-
tion is activated. The clock modification for this 
transition is set to “inc(x)”.  

3. The clock modifications of all other transitions 
descending from this state are set according to Xi

R 
and Xi

act. 
Finally, the initial state distribution together with the 
set of initial clock values has to be transformed into 
the discrete initial conditions. In principle, this is just 
a mapping from the continuous to the discrete set, 
despite the fact that the time in the discrete case is no 
longer continuous and therefore the corresponding 
density values for each (state, counter) can be re-
ceived by integrating over the (state, time) of the con-
tinuous set for each time step’s interval (which indeed 
transforms the density function to a discrete set of 
probability values).  

2.5. The initial state density function 

The creation of the initial state density function will 
be discussed on the basis of two typical NAS-
examples, namely a PLC and a switch failure.  

A PLC has three states: read, execute and write. The 
forth and fifth state, waiting for the cycle time to 
elapse and “operating system”, are added to the exe-
cution part, as for analyzing times, only the read and 
write states are of interest. For the initial state, the 
assumption is used that all possible times are equally 
likely. Let’s take tcyc for the cycle time, tw for the 
write time and tr for the read time. Then, the probabil-
ity density that the clock x equals a specific time 
value in the beginning equals 1/tcyc. The probability 
that the PLC is currently writing, therefore is tw/tcyc; 
tr/tcyc for reading and (1-tr-tw)/tcyc for the execution. 
Fig. 8 shows the continuous and its corresponding 
discrete automaton. For reasons of feasibility, the 
assumption was made that tw=tr=Δt. Defining td to-
wards the next integer number from tcyc divided by Δt, 
then, the (initial) probability for the discrete counter 
variable to represent a given value is 1/td. The prob-
ability of being in the read (or in the write) state 
therefore is 1/td, the one for the execution state: 1-2/td. 
The density distribution, for both, a continuous and a 
discrete time axis, is given in Fig. 10a. 
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Fig. 8: Continuous and discrete automaton of the PLC module 

The switch failure is modeled as follows: A failure 
might occur with a probability pFc(x) and will then 
last for Ft·Δt. It is possible that another failure occurs 

immediately afterwards. The corresponding automata 
for the continuous as well as for the discrete case 
(Note: pFd is a constant value) are shown in Fig. 9, 
while the associated density function for the switch 
failure is shown in Fig. 10b. The initial probabilities 
and clock values are determined as follows (Note: All 
initial clock values are equally likely):  
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Fig. 9: Continuous and discrete automaton of a failure module 

ln(pFc)

x

di(x)

x
Δt 3ΔtΔt tcyc

w
rit

e
re

ad

≈
≈

execute

a) b)
Δt=tw=tr

 
Fig. 10: Probability density functions 

2.6. Transformation into PRISM Language 

The transformation of the automaton into PRISM 
language is straight forward: For each sub-automaton 
a module of the following form is generated: 
module <modname> 
 <statevar>: [<range>] init <initial_s>; 
 <countervar>: [<range>] init <initial_c>; 
   [Dt] <ck1> & <zk> → <pk11>:(<zk+1,1,1>)&(<fk11>) + 
<pk12>:(<zk+1,1,2>)&(<fk12>) +<pk12>: ... ; 
   [Dt] <ck2> & <zk> → <pk21>:(<zk+1,2,1>)&(<fk21>) + .... ; 
... 
   [Dt] <c(k+1)1> & <z(k+1)> → <pk11>:(<zk+2,1,1>) & 
 (f (k+1)11) + .... ; 
... 
endmodule 

<modname> thereby is the name of the module, <state-
var> is the identification variable of the state (there 
might be several <statevar>s), <initial_s> can be used to 
assign an initial value to <statevar>, <countervar> is the 
implementation of the clock x, and <inital_c> the as-
signment of an initial clock value, [Dt] means that in 
each of the modules, whose command lines are indi-
cated with [Dt] the conditions (6) and (8) must be ful-
filled. <ck1> means the condition c1 of the state zk and 
<zk> is to indicate that this condition is valid, when 
the automaton is in the state zk. “→” symbolizes the 
firing of the transition, <pk11> equals pk1,1 (1st prob-
ability of the 1st transition of the state zk), <zk+1,2,1> 
means the state (zk+1)2,1 and <fk11> is the clock modi-
fication function fk1,1.  

If the initial state distribution has more than one non-
zero element, the initial state must be determined 
first. This can either be done using the init specifica-
tion of PRISM (which induces some problems) or by 
introducing a pre-process to the affected modules that 
maps a probability to each of the possible states  
(cf. [Greifeneder and Frey, 2006]). 



3. CASE STUDY 

The example contains a PLC, its PLC-IO, a wireless 
LAN, a sensor, an actuator and a field-IO (cf.Fig. 11).  
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Fig. 11: Structure of the case study 

To be determined is the delay between a sensor’s ac-
tivation and the reaction at a corresponding actuator. 
To do so, the following process must be supervised 
(cf. Fig. 12): After the input got triggered, some time 
may pass until the next request from the PLC-IO ar-
rives at the field-IO. Afterwards, the answer is gener-
ated and sent back through the network. Then, the 
second synchronization – this time on the cycle of the 
PLC – is necessary. After being executed by the PLC, 
the result must wait for the next PLC-IO send-time 
(this is not any more a cycle based function, but only 
a function of time being passed since the first syn-
chronization on the PLC-IO-cycle and the cycle 
time). Finally, the result must pass the network and be 
processed by the field-IO / the actuator.  
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Fig. 12: Signal tracking trajectory 

Analyzing the response time of this system leads to 
the distribution shown in Fig. 13. The value of 4.5% 
at time 50 ms means that the probability of a response 
being delayed in between 49 and 50 ms (discretiza-
tion step width = 1 ms) equals 4.5%. The second line 
of the graph (rombi) shows the corresponding distri-
bution arisen from measurements (200 values). Note: 
All measurements in this paper had to be shifted by a 
time offset of +3 ms. This offset is assumed to be 
caused by a systematic failure in the measuring 
method and therefore neglected.  
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Fig. 13: Response time distribution of the case study (meas-
urements and PMC-results) 

In a second experiment, the cycle times of the PLC 
and its IO got changed, so the PLC had a cycle of 
17 ms and the PLC-IO of 10 ms. By doing so, it is 
guaranteed that the PLC always has new values. Un-
fortunately, the medium delay rises from 41.9 to 
43.4 ms as shown in Fig. 14. 
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Fig. 14: Response time distribution for changed cycle times 

In both experiments, the cyclic superposition did re-
sult in the demonstrated distributions. Therefore, a 
third experiment was done, assuming a really fast 
PLC (1 ms), coupled with the maximum the authors 
could do for the (serial interface based) sending rate 
of the PLC-IO (3 ms). The corresponding distribution 
is shown in Fig. 15. While the PLC itself only has a 
constant influence of 1 ms, PLC-IO and network are 
the two sources of the distribution’s shape.  
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Fig. 15: Response times distributions for a fast PLC 

This implies that in the first two cases the network 
only causes a small part of the delay. However, the 
network enables architectures with a lot of synchroni-
zation delays. 

4. SUMMARY 

In this paper a formal automaton definition for model-
ing Networked Automation Systems (NAS) is given, 
followed by the corresponding discrete automaton 
and the affiliating transformation. The discrete 
automaton can easily be re-written in the PRISM cod-
ing language, which can be used for probabilistic 
model checking of NAS. The comparison of results 
from PMC and measured values has lead to an aston-
ishing compliance, which allows the generalization of 
the results by adding different not really measurable 
effects (like stochastic failures) to the model. 
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