
Determination of Delay Times in Failure Afflicted Networked
Automation Systems using Probabilistic Model Checking

Jürgen Greifeneder and Georg Frey
University of Kaiserslautern
Erwin-Schrödinger-Str. 12

67663 Kaiserslautern, Germany
{greifeneder, frey}@eit.uni-kl.de

Abstract

The determination of delay times in failure afflicted
Networked Automation Systems (NAS) is a new chal-
lenge for automation engineers. In addition to the new
system structures of NAS which share one or more com-
mon devices delays resulting from internal network
processes have to be taken into account. Furthermore,
the considerable influence of data transmission between
several asynchronously executed cyclic processes on sys-
tem performance should not be neglected in a work on
delay times.

This paper introduces a modular modeling approach
for NAS based on probabilistic timed automata. The
generated models allow the determination of delay times
by the use of probabilistic model checking (PMC). To
illustrate the concept it is applied to a case study deter-
mining reliability properties of a NAS.

Keywords: Probabilistic Model Checking, Delay Times,
Reliability Analysis, Networked Automation Systems.

1. Introduction
Modeling and analysis of automation systems re-

quires not only detailed knowledge about the aspects
concerning their function, but also about their real time
behavior and possible failures. It is especially necessary
to know about possibly induced delays. Most control al-
gorithms need to communicate with their process hard-
ware (i.e., sensors and actuators often abbreviated I/O
for inputs and outputs) within limited time intervals as
the control algorithm will fail otherwise. In cases which
are not related to safety, but for example to product qual-
ity, an accurate analysis of delay time is even more cru-
cial since a small deviance in delay time (e.g. positioning
of a drill or a movable processing unit) will have a direct
influence on the processing accuracy and thereby on the
quality of the end product.

For an automation system to be dependable a specifi-
cation of properties such as “A reaction to a change in a
sensor value will be issued within 200 ms.” or ”A
change in a sensor value which stays active only for a
time interval (pulse) of 5 ms is detected by the control-
ler.” might occur.

In classical structures using a single controller and di-
rectly connected I/O the answers to questions like this
depend mainly on the controller’s cycle time. However,
even in the simple case of one PLC cyclically processing
a signal the calculation of possible delays results in a
spectrum rather than a single value. In the easiest case,
this spectrum would turn out to be uniformly distributed.
If the PLC and the PLC-I/O-card use independent (i.e.
not exactly synchronized) cycle times, the overall struc-
ture definitely becomes more complex. If there are sev-
eral processes involved within one system, the complex-
ity of the latter increases; thereby an exact synchroniza-
tion of the same processes turns out to be highly
unlikely. Access conflicts and queuing times lead to ad-
ditional non-deterministic delays.

Where distributed systems with controllers communi-
cating with I/Os over networks are concerned the prob-
lem is even harder. Here, the network delay (typically
not given by a constant value but by a distribution) has
to be taken into account. As soon as only one single con-
troller with an I/O-module coupled by Ethernet is in use,
the delay time of the total system emerges to a distribu-
tion whose determination needs formal analysis [1].

In order to avoid infeasible demands on the control
system hardware, which are often entailed by worst-case
analyses, the observed properties might be relaxed by the
introduction of probabilistic bounds. This leads to prop-
erties like: “With a probability of at least 99.9% a reac-
tion to a change in a sensor value will be issued within
200ms.” or ”A change in a sensor value that stays active
only for a time interval (pulse) of 5 ms is detected by the
controller in 85% of all cases.”

Simulation is infeasible to check properties like this
on a complex system, since a probabilistic solution will
need a very long simulation time. The problem is even
bigger if the analysis is extended from a performance
check to a detailed reliability analysis where the possi-
bilities of failures in the components are considered in-
dividually during the analysis. Thus, the system under
consideration contains very short cycle times of a con-
troller together with very long mean times between fail-
ures (MTBFs) of the components.

The formal description of the considered systems
leads to models based on time, stochastic distributions

1-4244-0379-0/06/$20.00 ©2006 IEEE.

and probabilistic choice. A formal technique providing
the means for the description and analysis of systems
and properties like the ones described above is Probabil-
istic Model Checking (PMC [2]). In the presented work
PMC is applied to delay time analysis in Networked
Automation Systems given different settings and net-
work failures. The studied systems are of a discrete event
type. The properties to be checked upon are not directly
related to system failures or delays, but to the loss or de-
lay of process relevant information.

The paper is structured as follows: In the next section
requirements for and occurring types of signals in dis-
crete event control systems (DECS) are discussed. The
third section furnishes an explanation of the modeling
approach, and the fourth section contains a case study
demonstrating the possible use of PMC for the assess-
ment of the reliability of distributed network based
automation systems. In the fifth and final section the
conclusion will be followed by an outlook on further
work within the framework of the presented approach. In
comparison to former works [1], the modeling approach
not only got developed further, but also it will be applied
in a full case study and is enriched with a new module
concept.

2. Requirements and Signals in DECS

2.1. Classification of Requirements
Requirements on classical continuous control systems

are transferable to a generic description level (compensa-
tion of disturbances, adjustment of the control variables).
Therefore, the considered system can be evaluated along
the lines of generic quality metrics. This is not, however,
possible in the case of discrete event systems control,
where it is possible to evaluate the degree of problem
specific demand satisfaction. From there on specific
quality values can be derived. Then, an abstraction of the
problem descriptions to a multitude of templates makes
it possible to categorize different requirements.

In general, all requirements for DECS can be reduced
to two general properties: value correctness and temporal
correctness [3]. These can be further split up into two
corresponding questions: Will the system respond to an
input change with the correct output change (value cor-
rectness)? and Will it do so within the correct time
bounds (temporal correctness)?

Value correctness, in the DECS case, is determined
mainly by the control algorithm itself (the correct func-
tioning of sensors and actuators is preliminary). In the
context of the presented work, the correctness of the con-
trol algorithms is taken as a given. When it comes to
temporal correctness, the multitude of different require-
ments can be mapped down to three cases:

1. Maximum and minimum (delay) times, e.g. the re-
sponse time passing between the activation of an
emergency button and a reaction.

2. Distribution: With which probability is it possible
to react to a signal within x seconds?

3. Differences, distances: Time difference between the
times of arrival of two consecutive data packets or
the probability of these packages arriving in the
correct (original) order.

2.2. Types of Signals

When the question of breakdowns in redundant data
networks is dealt with, it does not suffice to know about
the probability of the occurrence of one specific break-
down. Rather, the time necessary for the determination
of the breakdown itself and the additional time needed to
regenerate the information lost during this breakdown
must be included. Finally, the probability that informa-
tion is lost entirely has to be considered; the probability
of information not arriving within a given time frame
must be determined.

τ fixedτ → ∞

τ min signal may change

I)

III)

II)
t t

t

Figure 1. Types of Signals.

In a discrete automated control system, there are three
kinds of signals to be discussed (cf. Figure 1):

1. A signal which stays active until it is processed
(and necessary activities are consecutively carried
out), for example the emergency stop. After it has
occurred, it will not be reset until the message has
been received and an action has taken place.
Question: When will the signal be discovered?

2. A signal which is active only for a fixed time pe-
riod τfixed. After that period the information is lost if
it has not been read out. An example of this type of
signal is that given when a metallic object passes an
inductive sensor.
Question: Will the signal be discovered?

3. The combination of the above mentioned signals,
for example one which changes its value and keeps
this new value until the next change or at least for
τmin. Questions:

a. Will the signal change be discovered before it
changes again? and

b. When will a signal change be discovered?

3. Modeling approach

The networked automation system under considera-
tion consists of one or more controllers connected to the
process by a network built of Switches and I/O-modules.
The components exchange signals and information using
TCP/IP. Some components exist more than once and the
model of the system has to be scalable in an easy way.

Therefore, it makes sense to model the different compo-
nents separately and then connect them to build the sys-
tem discussed.

For the construction of the individual components
probabilistic timed automata (PTA) as well as the
method of digital clocks [4] are used. This offers the
possibility to eliminate non-deterministic decisions
through the reduction of the time axis to a set of discrete
time steps. In the course of the experiment, all relevant
decisions (transitions) are fired synchronously. Thus, the
model no longer records the exact time of occurrence,
but only the fact that an event occurred within the last
time step. In some systems, though, it is not possible to
identify an optimal time increment at all, so that each
participating subsystem executes one and only one ac-
tion. If the time increment is chosen to be smaller than
the shortest (time) difference in between two successive
system changes, the size of the model tends to increase
exponentially.

In the following sections, Probabilistic Model Check-
ing will be introduced and the chosen system model will
be presented. Then, the problem of the initial states will
be discussed, and the property formulation in PCTL
(Probabilistic Computation Tree Logic) will be intro-
duced. Finally, the module concept will be described. In
the respective sections the coding in PRISM (a model
checker from the University of Birmingham, [5]) will be
interlaced.

3.1. Probabilistic Model Checking

If model checking [6] is to be used, a model of the
system has to rely on formal description. The properties
under observation are also defined in terms of formal
logic. These two descriptions are input to a model check-
ing algorithm that checks whether the properties hold on
the system (cf. Figure 2). System and properties are dealt
with separately from one another; thus, a change in the
system affects only the system model, a change in the
properties only the formal properties.

System Properties

modeling formalization

System model formal properties

Model checking

result

Figure 2. Workflow of model checking.

The main advantage of model checking is the possi-
bility of complete coverage of all possible evolutions of
a system (as opposed to a subset only, which is all that

can be provided for in the cases of simulation and test-
ing). The main drawback is, however, that the state space
to be covered tends to increase very quickly with an in-
creasing complexity of the model (state space explosion
problem).

The state space explosion can be avoided to some ex-
tend by the application of proven modeling rules. That is
why a strictly hierarchical programming and the use of a
broad amount of synchronization techniques are recom-
mended for the description of distributed systems.

In the case of PMC, the nonrecurring termination con-
dition must be considered: In a cycling problem, the
probability of an event taking place repeatedly over time
can be expressed mathematically as a geometrical pro-
gression which indeed leads to a probability being one in
an infinite time; that means the probability of any event
in a cycling problem will be either one or zero – true or
false. Therefore, the first condition to a probabilistic
model must be that it will terminate after it reaches the
event supervised. Furthermore, each possible arrange-
ment must be depicted in that very first cycle, and the
model must recognize by itself that the event took place.
This prerogative changes the design process fundamen-
tally: the separation between model and properties must
be abolished and replaced by a new formal design proc-
ess (cf. Figure 3).

System Properties

modeling formalization

System model formal properties

Model checking

result

reduction

reduced
system model

System

modeling

System model

Figure 3. Workflow of probabilistic model
checking.

 While the formalization process for the properties
stays the same as in Figure 2 (shown in the middle of
Figure 3), the construction of the model must be
changed. The first possible way to do so is shown with
dashed lines on the left-hand side of Figure 3: The ge-
neric system model gets convolved with the specific
formal properties, which amounts to a reduction of the
generic model and the inclusion of termination condi-
tions. The second possible way, given in dotted lines on
the right-hand side of Figure 3, is to include the proper-
ties already in the modeling task. This leads to much
more refined models, but requires the engineer to rebuild

his models for each possible case. In this work, the sec-
ond (dotted) approach is used. This will provide a deep
understanding of what is an optimal model on the ground
of which a suitable reduction algorithm can be proposed.
In the further course of this project the experience –
which will be gathered up to this point in future – in
dealing with this kind of modules should lead to a suit-
able reduction algorithm and therefore towards the dot-
ted (left) branch.

3.2. System model

Finite automata with extensions for timed and prob-
abilistic behavior are used to build the system model. A
finite automaton as shown in Figure 4 consists of states
linked by conditional transitions.

Sn

(Sn+1)a

(Sn+1)b

(Sn+1)m

…

c1

c2

cm

…

Figure 4. Finite Automaton.

For any state Sn in an automaton with m possible post-
states connected via transitions t1 to tm with transition
conditions c1 to cm respectively the following must hold:

1. There are no two conditions active at the same

time:

, [1..];
i j

i j m i j
c c false

∈ ≠

∧ =∀ (1)

2. The disjunction of all conditions must cover the

total state space:

[1..]
i

i m
c true

∀ ∈

=∨ (2)

The combination of these two preliminaries implies

that there is always one and only one active transition
within a given module.

For reasons of time scaling, a transition should only
become active when a well-defined period of time has
passed. The accomplishment of that can be assured by
the employment of timed automata (Figure 5a).

‚

Sn

(Sn+1)1

(Sn+1)2

(Sn+1)m

…

c1

c2

cm

…

(Sn)1

(Sn)2

(Sn)m

…

‚

‚

t

t

t

Sn

(Sn+1)1

(Sn+1)2

(Sn+1)m

…

c1

c2

cm

…

t

t

t

a)

b)

Figure 5. Timed Automaton.

When the time t has passed, all transitions, which are
labeled with the sync-signal t, will be activated immedi-
ately. In this work two restrictions are made: First, there
is only one clock (i.e. time) on which all processes are
synchronized (instead of several different sync-times
which could be used with a general timed automaton)
and second, the condition of the transition following will
be evaluated in the same moment as the sync-transition
becomes activated. Given these assumptions, it makes
sense to simply omit the intermediate states S’n and use
the graphical representation shown in Figure 5b.

The next step of extension leads directly to the prob-
abilistic timed automata (PTA [7], cf. Figure 6a). In this
probabilistic case, the transitions are assigned a probabil-
ity [0..1]ip ∈ , with:

[1..]
1i

i k
p

∀ ∈

=Σ (3)

In other words, the deterministic automaton is
enlarged by a non-deterministic choice weighted by
probabilities pi. As the intermediate states S”n are of
transient nature, the graphical representation shown in
Figure 6b is used.

c1

Sn

t

(Sn+1)1,1

(Sn+1)1,2

(Sn+1) 1,k

…

p1
p2

pk
(Sn)1

‘‘

cmt

…

(Sn)m
‘‘

…
…

Sn

(Sn+1)1,1

(Sn+1)1,2

(Sn+1) 1,k
…

p1

p2

pk

cmt

… …

c1t

…

a)

b)

Figure 6. Probabilistic Timed Automaton.

The difference between a non-deterministic choice
out of two paths and a stochastic choice out of two paths
weighted each with a probability of 50% is that PMC
will consider each path of the stochastic choice with a
probability of 50% while it will separate the non-
deterministic choice in two independent automata, once
with the first and once with the second path. In this case,
the choice is eliminated and the associated probability
will be 100% for the respective transition. Yet, there ob-
viously remains a difference between that probability
and the 50% in the case of a stochastic choice.

Note: Probabilities which equal one and conditions
which are true for all times are for reasons of graphical
simplification not written into the transitions. The
PRISM code of the system model itself is constructed as
follows:

[Pr] conditions assignments;

[Pr] conditions p1:assignments + p2:assignments + …;

[Pr] is the synchronization signal mentioned before. If
it is omitted, then the determinism of the sequence is de-
stroyed. Conditions are a predicate formulation com-
posed of one or more transition conditions ci (or their ne-
gated partners) coupled by binary operators. Assign-
ments are value assignments to one or more variables,
which can be functions of the variables’ values valid just
before the transition got active. Finally, p1, p2 … are the
probabilities used in the probabilistic automata.

3.3. Initial state

One of the most important differences between simu-
lation and model checking is that model checking will
definitely reach all the possible states at least once, while
in simulation even after a long period of time this might
not be the case. On the other hand, it would be ridiculous
to run model checking more than once, if it is possible to
reach every possible state by means as simple as the
right definition of the initial conditions. This makes it
much easier to achieve the previously reclaimed charac-
ter of a model checking algorithm to terminate after
reaching the state, the user is testing on. The right (and
complete) assignment of the initial states is difficult. If
there are at least two processes (modules) which do not
cycle using the same cycle time, there will be a large
number of possible drift times, especially if they are not
started paralleled (synchronized). In the ideal case there
are only two drifting modules and all possible drift times
will occur with the same probability. In this case, the ini-
tial condition can be found easily by pre-adaption of an
“equally randomized initial state” cycle just before the
first time step in one of the two modules. This is shown
in Figure 7 and can in PRISM best be coded as follows:

[P] !pre&var<varMax 1 / (varMax - var):(pre = true) +
 (var – varMax - 1) / (var - varMax):(var’ = var + 1);

[P] pre&(!pre2|!pre3|…|!pren) true;

 [P] is the sync-operator, pre is the binary variable
serving as a detector of the completion or non-
completion of the initial process. !pre is the negation of
pre. pre2… pren are the detection variables of synchro-
nized modules, as the automaton would deadlock, with-
out this command (cf. section 3.2).

var=var+1 t pre=true

(varMax – var)
1

(varMax – var)
varMax – var – 1

pre=false

Figure 7. Equally randomized initial state.

3.4. Property formulation in PCTL
PMC uses an extension of CTL (PCTL – Probabilistic

Computation Tree Logic, [8]) to specify properties of

systems described by Markov models. Typically, these
properties are composed of atomic propositions or predi-
cates on the variables in the model. Strictly speaking,
there is a distinction between state and path constructs,
but for the sake of this work it may be neglected. Nor-
mally, PCTL formulas evaluate to create a Boolean
value. Yet, it is often useful to know the actual probabil-
ity rather than merely assure a probability above or be-
low a given bound. For that reason several implementa-
tions of PMC facilitate this functionality additionally.
PRISM allows properties of the following form:

P=? [expr1 U expr2]

P=? represents the probability to be determined, expr1
and expr2 are predicates which evaluate to Boolean ex-
pressions. This command has to be read as follows: De-
termine the probability, that expr1 is true (at least as
long) until expr2 becomes true, and expr2 becomes true.
Note: There is no need for expr2 to stay true, it might
become false and true again, which can not be deter-
mined using this operator. The easiest way to use this
operator is to replace expr1 by true and only work on the
second predicate, expr2:

P=? [true U expr2]

Starting from a given system model and a desired set
of properties, the PRISM code must be generated. It is
important that in the course of that action the algorithm
terminates as soon as possible. There are two main cases
to be distinguished:

a) If the main interest lies on the duration – e.g. the delay
time – it is necessary to wait until this process is fin-
ished, or (for practical purposes) until a maximum time
bound has been reached. This can be done using the op-
erator

P=? [true U Runtime = Lf]

where Lf is a parameter – PRISM has to check for
each value of Lf in a given range – and Runtime is a
variable which gets assigned by the model: When the
desired property occurs, the value of the time counter
will be assigned to that variable. It is possible to check
on the counter variable directly; yet, in that case the re-
sult would be the integral of the distribution function
from Lf to infinity.

b) If the main interest lies on the probability of an over-
all occurrence of the desired property, then the calcula-
tion should not be terminated by the incidence of the
property itself. This task can be achieved only by check-
ing for a significant time period, namely the one within
which the event can take place once and will not take
place for a second time, as the probability check can
only determine whether something occurred or not. To
solve this problem it is important to cover all possible
initial states in the first cycle (cf. section 3.3) and termi-
nate the automaton after finishing this one cycle.

3.5. Module concept
If the discussed characteristics of the model to be de-

signed are taken into consideration, the code being im-
plemented can be classified towards three categories:

1. Basic functions
2. Architecturally based assignments
3. Signal tracking.

The ‘basic functions’ category is featured by the fact
that those can be implemented independently from the
specific problem descriptions or the properties to be ob-
served. An integral part of this category is e.g. the basic
function of a sensor to return its signal’s value if it is
asked for it as well as the cyclic run of a programmable
logic controller (PLC). These basic functions must be
endorsed problem-specifically. The PLC – for example –
must know, which I/O-modules it has to scan and (if this
should be modeled explicitly) what has to be done with
the signals returned by the I/O-modules. Since these
specifications as well as information like which switch a
specific I/O-module are connected to have in common
their architectural nature, they constitute the second
category. The third category is directly linked to the
properties observed. All modules which are tracking the
completion of properties are therefore part of this third
category. They are necessary as PCTL (in the chosen
syntax) does not facilitate of specific sequence of states.

Ideally, it is possible to design the modules of the
three categories independently from one another. How-
ever, this is possible only for few examples and requires
a rather high amount of available memory (RAM) capac-
ity. In all other cases a reduction process has to be added
after the design using these three categories.

4. Case study
The structure of the case study to be discussed is

shown in Figure 8. In this example the investigation con-

centrates on the superimposition of different cyclic proc-
esses.

The system consists of two PLCs which integrate a
controller with a cycle time of 3.5ms. Each of the PLCs
has a connected I/O-board with an independent cycle of
5ms. These two modules (PLC and corresponding I/O-
board) are not synchronized and communicate via a
shared memory. While PLC1 is connected to switch 1,
PLC2 is connected directly to switch 2. The system also
contains 8 digital I/O-boards to which one or several
sensors and actuators are connected. In this setting the
I/O-boards 1 to 4 are connected to the first Switch, while
the I/O-boards 5 to 8 are connected to the second Switch.
The two switches are connected to one another as well.

The PLC on the left-hand side processes the sensor
information of the I/O-boards 1 to 5, while the PLC on
the right hand side processes the information of the I/O-
boards 4 to 8. All I/O-boards are sampled cyclically.

Note that in the underlying client server protocol the
PLC (=Client) sends requests to the I/O-modules
(=Server) and the latter “answer” only to these requests,
i.e. the I/O-boards do not sent any information by them-
selves. To dispatch a data packet the following delays
occur:

• 0.25ms to pack (send) and unpack a packet.
• 0.06ms per Switch to be passed.
As there is no method implementing a queue module

yet (cf. chapter 5) the transference over a switch has
been assumed to be waiting time free. For the discussion
of a non-constant switching time see [1].

If one of the digital I/O-boards receives a request,
1.5ms pass before the accompanying answer returns over
the network – indeed, only if the I/O-board has to proc-
ess no other request. This can be the case for I/O-boards
4 and 5, as both of them have to process requests from
both PLCs. If an I/O-board is processing a request when

Network delay: 0.06ms
(per direction and switch)

PLC1-
IO

cyclic
requests

Cycle time:
20 ts = 5ms

Inputs

E
xe

cu
tio

n

Outputs

PLCPLC11

Cycle time:
14 ts = 3.5ms

read

delay=?

Inputs

E
xe

cu
tio

n

Outputs

PLCPLC22

PLC2-
IO

Cycle time:
20 ts = 5ms

read

Switch 1 Switch 2
cyclic

request

IO1

sensors +
actuators

IO8IO2

S+A

IO3

S+A

IO4

se
ns

or
(s

)

IO5

S+A

IO6 IO7

Answer time: 1.5ms

w
rit

e

w
rit

e

A A S+A S+A S+A

Figure 8. Case study.

another request arrives, the second request must wait un-
til the first request has been treated. These attendance
periods create further delays.

It is assumed that PLC1 activates an actuator located
on I/O-board 5 following the occurrence of a signal
change at a sensor which should be located on I/O-Board
4. The signal appearing at I/O-board 4 has signal type I
characteristics, i.e. that signal will not be reset until the
corresponding action took place. The property to be de-
termined is the actual delay time passing between the
signal change at I/O-board 4 and the activation of the
actuator at I/O-board 5.

In the beginning of their cycle, the PLC-I/O-boards
are sending the requests to the I/O-boards they are asso-
ciated with in numerically ascending order, i.e. PLC-I/O-
1 sends first a request to I/O-board1, then to I/O-board2,
-3, -4 and -5; PLC-I/O-2 sends a request first to I/O-
board4, then -5, -6, -7 and -8. This functional peculiarity
justifies the negligence of a detailed network model. By
this, the I/O-boards 1, 2, 3, 6, 7 and 8 appear only indi-
rectly in the model, e.g. they can be neglected in the cal-
culations (and therefore in the PRISM code). The same
is true for the second PLC located on the top right hand
side of Figure 8. As the cycle of this PLC is independent
of its I/O-board cycle and this PLC is not part of the later
discussion, it will be neglected too.

PLC1, the delay time determination and the basic
modules can be implemented as module type 1 (cf. sec-
tion 3.5). This means that they can be implemented in-
dependently of the specific task. Special algorithms are
required for the I/O-boards which indicate the linking
structures (module type 2). By reason of the relatively
simple case study the complete signal tracking (module
type 3) can be realized in one single independent mod-
ule. Also of module type 3 is the termination module. In
the following the single modules are briefly introduced.

In addition to these basic settings the incidence of a
network failure is implemented. In this case, the network
(or part of it) is not available for 4ms. The failure can
occur with a probability of 10-4. If the network is down,
this can mean, that there is congestion, a rewriting of the
IP-table, a reboot of a switch or the specific I/O-board
and so on. All these cases are modeled as the same
event. It is assumed, that the destination for any IP-
packet is not available in the net-down states. Conse-
quently, if an I/O-board tries to send a package to the
network in this period, it remains trying to sent this
package several (at the maximum of 15) times. The
maximum trial time can be calculated to be

15

1
(2 1) 2 , =25,6 sn

n
τ τ μ

=

− ⋅∑ (4)

As a resent in the IP-network will occur after (2n-1)
times 51,2 μs (plus 9,6μs, with n the number of trials),
the maximum trial time would be 370ms. This however
is much more than the net-down time of 4ms (the prob-
ability of reaching 370ms is (10-4)93≈0). The I/O-board

therefore waits until the network is available again and
processes afterwards.

The PLC-I/O-boards are able to receive data at all
times. A package’s information is passed to the shared
memory immediately within the processing time of one
time step. This is true even for late-packages.

It is assumed, that the relative time drift in between
the modules is less than one time step over the total time
period. The given delay times are educated guesses
based on lab measurements of similar structures.

4.1. Detailed Modules

The module of the PLC as well as the core modules of
the both PLC-I/O-boards are built from ring counters (cf.
Figure 9) which count from the initial value up to a
maximum value and start again with 0.
As in all following state charts, Figure 9 does not show
the reset-transitions which are activated by the termina-
tion-module and lead from each state of the chart to a
predefined termination-state. These transitions are not
shown as they would make the state charts extremely
complex without gaining any more important behavioral
information.

count:=0 t

count < CountMax-1

Inc(count)

t

t

count = CountMax-1
Figure 9. State chart of a ring counter.

For the delay time determination the same module
was used, indeed, without reset when the maximum time
(CountMax-1) is reached. In this case the counter re-
mains on its maximum position.

For both the PLC-I/O-boards, as well as for the PLC,
initial state creation automata were realized as discussed
in section 2.3 (cf. Figure 7). It is assumed, that the drift
within the different processor time bases is less than one
time step (0.25ms) within the calculation time (approxi-
mately 25ms).

As the network wasn’t modeled explicitly (but only
accounted for by a constant time delay) the I/O-boards
input modules must provide two functions: First, they
must "take up" a new request in dependence of the
counter variables of the PLC-I/O-boards. Second they
must buffer the request if a second request arrives, be-
fore the first one has been processed. Figure 10 shows
the accompanying state chart.

Already in this example, it is slightly appreciative
why realizing queues in the straight forward variation
leads to huge state spaces: If there would be several
(possibly in short cycles requesting) PLCs – instead of
two PLCs which request within the run time just twice
using a relatively large cycle – the state chart (and with it
the automaton) would be by far more complex. The ac-

companying state explosion can then only be shrouded
by using another abstraction level in the state charts rep-
resentation. If queues as they appear, e.g. in switches,
were modeled in this visual, direct way, the state explo-
sion would make the models absolutely no more analyz-
able (under the constraints of the available software
tools). Possible alternatives to solve this problem are be-
ing discussed actually.

No request

In=0

t

t request
from PLC1

otherwise

In=1

t

t request
from PLC2

t

else

In=4

t

I/O sends to PLC1

t request
from PLC2

else

In=2

request
from PLC1

else

In=3

I/O sends to PLC2

t

t

t

t

t

I/O sends to PLC2

t

I/O sends to PLC1

Figure 10. State chart of the I/O-board input
queue.

In principle, the two PLC-I/O-boards also need an in-
put buffer. However this was neglected in this imple-
mentation, as solely one module for each of the requests
was created, which detects whether or not the corre-
sponding signal returned already. Note: In this imple-
mentation the modeled data packages have fictive char-
acter, i.e. there is no information available on what data
they are carrying and if the request really arrived. This
information is modeled indirectly by the above discussed
modules. The corresponding state chart is shown in
Figure 11.

else

V=1

t

t request
sent

t

else

V=0

t

answer
reseived

Figure 11. State chart of the PLC-I/O-request-
back-module.

While the “request sent” is created indirectly by the
value of the corresponding PLC-I/O-counter, the “an-
swer sent” is generated by the I/O-board (cf. Figure 12).

ct:=0 Inc(ct)t
t

ct<4

t
t

ln=0

ln>0 ct:=5
answer sent

t

ct<4

Figure 12. State chart of each of the I/O-boards.

The I/O-board acts as server, i.e. it remains at state 0
until a request (ln>0, see also Figure 10) has arrived.
From there it works as a ring counter.

Finally, only the two signal tracking modules are ab-
sent. The first one is the already mentioned termination
module. This module consists of two states: work and
terminate. Initially, the automaton is in the work state
and stays there until either the maximal signal delay time
has elapsed or the actuator has been activated. The sec-
ond signal tracking module "observes" the information
passing through the system. The first state transition is
triggered, if the packet, sent by the sensors I/O-board has
arrived at the PLC-I/O-board. The next two state
changes occur, as soon as the PLC cycle reaches its
"read"-state (first change) and the ensuing “write” state
(second change). The consequently following step is the
arrival at the I/O-board 5. As the PLC-I/O uses the same
request to write out values as to ask for the actual sensor
values, writing-out isn’t modeled at all, but only tracked
by the module. The final (state changing) transition of
the tracking automaton is activated when I/O-board 5
successfully processed the request. By passing this tran-
sition, the “delay time variable” is set as discussed in
section 3.4. This state is used by the termination module
to terminate the calculation.

Under the consideration of network failures, the state
chart of the PLC-I/O-boards change from a single ring
counter (cf. Figure 9) towards the state chart shown in
Figure 13. The difference is given by the two blocks in
the middle of Figure 13. For all the packages to be send
(0<count<6) the I/O-board tries to send a package until it
has been sent.

ct:=0 Inc(ct)t
t

count<CountMax-1

t

count=CountMax-1

ct:=ct+1

t

¬netdown&count<6

t ¬netdown
&count=6

retry

t

ne
td

ow
n

¬
ne

td
ow

n
&

co
un

t<
6

t
t

¬netdown&count=6

t
netdown

Figure 13. State chart of the I/O-Boards under
consideration of network failures.

Obviously, the state charts of the I/O-boards must be
expanded also (as the answer can’t be send while the
network is absent). This is shown in Figure 14.

ct:=0 Inc(ct)t

t

ct<4

t

ln=0

ln>0 ct:=5
answer sent

t

ct=4 &
netdown

ct=4 &
¬ netdown

ct:=5
t

netdown

t
¬ netdown

t t

Figure 14. State chart of an I/O-board under
the consideration of network failures.

The state chart of the net-down module is shown in
Figure 15. While everything is fine (NetDown=0) the
network may fail in each time step with a probability
pNetDown=10-4 or remain in the OK-State with a probabil-
ity of (1-pNetDown). If the transition to the left gets acti-
vated, the automaton passes to the state on the right hand
side of Figure 15 and stays there until the Net-down-time
of 4ms has passed. Afterwards it (normally) returns to
the state on the left hand side. From there another failure
may occur immediately (with probability pNetDown).

NetDown:=0
Inc (NetDown mod
(Netdowntime-1))

pNetDown

1-pNetDown
t t

NetDown<Netdowntime-1

t

NetDown=Netdowntime-1

pNetDown
1-pNetDown

Figure 15. State chart of the net-down module.

4.2. Results
Figure 16 shows the probability of different delay

times. The calculated values are marked by little crosses,
connected by linear interpolation.

0

0.05

0.1

0.15

0.2

0 5 10 15 20

delay

pr
ob

ab
ili

ty

Figure 16. Time between occurrence and reaction.

The value of 18% at 15ms means that the probability
for a delay time between 14.75ms and 15ms is 18% mul-
tiplied with the synchronization time step width of 0.25
what equals 4.5%.

The shortest delay time (7ms) originates as shown in
Figure 17. In this case, the signal change occurs just at
the moment when PLC1-I/O’s counter variable equals 4
and there is no waiting queue at I/O-board4. Further-
more, the PLC1’s cycle itself is reading just after the an-
swer from I/O-board4 has arrived.

Starting from 12ms the response times of PLC and
PLC-I/O cycle harmonize no more. The length of the
plateaus is caused by the answer time of the I/O-board
(1.5ms = 6 time steps) and the PLC-I/O-cycle-time (5ms
= 20 time steps). The plateau starting at 17ms combines
unfavorable waiting periods in the I/O-board with cycles
not in harmony of PLC and PLC-I/O. The maximum de-
lay time is 18.25ms. This worst case originates as shown
in Figure 18.

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6 …2

8
2
7

4 5 … 0 1 2 3 4 5 6 …

0 1 2 3 4 5 0

… 12 w r 2 3 4 5 6 7 8 9 10 11 12 w r 2 …

0 1 2 3 4 05

PLC-
I/O 1

send
I/O 4

receive

PLC 1

I/O 5

send

signal changes actor reacts

Figure 17. Minimum delay time.

In this case, the signal change occurs exactly when
PLC1-I/O’s counter variable equals 5. Therefore, the next
request will arrive 19 time steps (4.75ms) later. Unfortu-
nately, there is a waiting queue at I/O-board4, as PLC-
I/O-board5 has requested just before. 2.75ms later, the
information gets sent back to PLC1. However, in the cor-
responding cycle the read state just has passed. Hence,
another delay of 3.25ms is added. After being processed
by the PLC itself, the information has to wait until PLC1-
I/O’s counter variable equals 5 and it can be sent to I/O-
board 5. Arriving there, the request from PLC2 was faster
again and therefore another wait-time of 1.5ms is occur-
ring, before the information is being processed by I/O-
board 5 and finally handed over to the corresponding ac-
tuator. Obviously, this is not the only case resulting in
the maximum delay time, as some of the blocks (e.g.
PLC1’s cycle) may be shifted in relation to the other cy-
cles by a small time (e.g. 1 time step to the right) without
changing the drafted frame.

In conclusion it can be adhered, that 88.5% of the de-
lay times are in the range between 12 and 16.75ms. Fur-
thermore, it can be guaranteed, that in 99% of all cases
the delay stays below 17.5ms. Additionally, and for most
applications most important, the maximum response
time is proven to be 18.25ms. On the other hand – also
interesting for safety reasons – there will be no reaction
earlier than 7ms after the occurrence of the signal
change.

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
9

2
8

2
7

0 1 2 3 4 5 0 1 2 3 4 5 0

… 12 w r 2 3 4 5 6 7 8 9 10 11 12 w r 2 3

PLC-
I/O 1

send
I/O 4

receive

PLC 1

signal changes

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
9

3
8

3
7

5 6 … …19 0 1 2 3 4 5 6 7 … ... 19 0 1 2 3 4

PLC-
I/O 2 3 4 … …19 0 1 2 3 4 5 … …19 0 1

send

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

actor reacts

6
9

6
8

6
7

7
0

7
1

7
2

7
3

7
4 …

4 5 6 7 8 9 10 11 12 w r

wait

5 6 7 8 … …19 0 1 2 3 4 5 6 7 …

2 3 4 5 … …19 0 1 2 3 4 5 …

0 1 2 3 4 5 0 1 2 3 4 5 0
send wait

I/O 5

send

Figure 18. Maximum delay time.

The second experiment to be discussed is the influ-
ence of network failures (as defined above) on the delay
time. Figure 19 shows the comparison of the graph with
and the graph without failures (logarithmic scale). The
differences between the two graphs (with failures minus
without failures) are given in Figure 20 (linear scale). In
relation to the absolute numbers, the two graphs are
nearly the same up to 17ms despite some lump differ-
ences in the beginning.

Starting from 17.25ms, the number of packages being
delayed for the corresponding duration has increased by
about 8%. Whereas there are no packages being faster
than before, there is quite a good number of late pack-
ages now. The probability of no delay times longer than
17.5ms has decreased from 99% in the undisturbed case
to 94%. Even worse, the probability of a package being
delayed for more than the above mentioned maximum
delay of 18.25ms is 5.1% and therefore in a significant
range.

1 E -04

0.001

0.01

0.1

1

0 5 1 0 15 2 0

Probability (log.)
10-1

10-2

10-3

10-4

5 10 15 20 ms

no failure
with failure

Figure 19. Delay time with network failures.

-2,0E-04

-1,5E-04

-1,0E-04

-5,0E-05

0,0E+00

5,0E-05

1,0E-04

1,5E-04

2,0E-04

0 5 1 0 1 5 2 0

probability difference

5 10 15 20 ms

10-4

-10-4

2·10-4

Figure 20. Difference in between delay times
(failure minus without failure).

5. Conclusion and Outlook
The reliability of distributed network based automa-

tion systems can be discussed by using PMC as shown
by a case study. Thereby worst case analyses are suc-
cessfully avoided.

When PMC is used to analyze the behavior of net-
work-based automation systems, the choice of properties
to be proven influences the model to be formulated.
Hence, a sharp separation of model and property formu-
lation leads to both a huge state space and a huge verifi-
cation time. Therefore, a new modular modeling ap-
proach considering the properties during the formulation
of the system model has been presented.

The next milestones of the introduced work are lo-
cated in a refinement of the introduced application ex-
ample as well as in the discussion of possibilities to sen-
sibly implement queues (i.e. without the discussed state
explosion). Furthermore, the advantages of different
PLC-I/O behaviors and of the use of event based instead
of polling mechanisms will be discussed. Last not least
the elaboration of experience will lead to a suitable re-
duction algorithm and the possibility of a computer
based design process.

References

[1] J. Greifeneder and G. Frey, “Probabilistic Delay Time
Analysis in Networked Automation Systems”, Proceed-
ings of the 10th IEEE International Conference on
Emerging Technologies and Factory Automation,
ETFA 2005, Catania, Italy, Vol. 1, pp. 1065–1068,
Sept. 2005.

[2] M. Kwiatkowska, G. Norman, D. Parker, Modelling
and Verification of Probabilistic Systems, in: Mathe-
matical Techniques for Analyzing Concurrent and
Probabilistic Systems. CRM Monograph Series, vol 23.
American Mathematical Society, 2004.

[3] H. Kopetz, Time-triggered real-time computing. An-
nual Reviews in Control 27 (2003) 3–13, 2003.

[4] T. Henzinger, T., X. Nicollin, J. Sifakis, S. Yovine.
What good are digital clocks? Proc. ICALP'92, LNCS,
vol. 623: 545–558, Springer, 1992.

[5] M. Kwiatkowska, G. Norman, D. Parker. PRISM:
Probabilistic symbolic model checker. Proc.
TOOLS’02, LNCS, vol. 2324: 200–204. Springer,
2002.

[6] B. Bérard, B., Bidiot, M., Finkel, A. Laroussinie, F.
Petit, A., Petrucci, L. and Schnoebelen, Systems and
Software Verification, Model-Checking Techniques and
Tools Springer, Ph. 2001.

[7] R. Alur, C. Courcoubetis, D. Dill, Model-checking for
probabilistic real-time systems. ICALP’91, LNCS, vol
510: 1–100, Springer, 1991.

[8] H. Hansson, B. Jonsson, A logic for reasoning about
time and reliability, Formal Aspects of Computing, 6,
no. 4: 512–535, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

