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Abstract 

The determination of delay times in failure afflicted 
Networked Automation Systems (NAS) is a new chal-
lenge for automation engineers. In addition to the new 
system structures of NAS which share one or more com-
mon devices delays resulting from internal network 
processes have to be taken into account. Furthermore, 
the considerable influence of data transmission between 
several asynchronously executed cyclic processes on sys-
tem performance should not be neglected in a work on 
delay times. 

This paper introduces a modular modeling approach 
for NAS based on probabilistic timed automata. The 
generated models allow the determination of delay times 
by the use of probabilistic model checking (PMC). To 
illustrate the concept it is applied to a case study deter-
mining reliability properties of a NAS. 

 
Keywords: Probabilistic Model Checking, Delay Times, 
Reliability Analysis, Networked Automation Systems. 

1. Introduction 
Modeling and analysis of automation systems re-

quires not only detailed knowledge about the aspects 
concerning their function, but also about their real time 
behavior and possible failures. It is especially necessary 
to know about possibly induced delays. Most control al-
gorithms need to communicate with their process hard-
ware (i.e., sensors and actuators often abbreviated I/O 
for inputs and outputs) within limited time intervals as 
the control algorithm will fail otherwise. In cases which 
are not related to safety, but for example to product qual-
ity, an accurate analysis of delay time is even more cru-
cial since a small deviance in delay time (e.g. positioning 
of a drill or a movable processing unit) will have a direct 
influence on the processing accuracy and thereby on the 
quality of the end product.  

For an automation system to be dependable a specifi-
cation of properties  such as “A reaction to a change in a 
sensor value will be issued within 200 ms.” or ”A 
change in a sensor value which stays active only for a 
time interval (pulse) of 5 ms is detected by the control-
ler.” might occur. 

In classical structures using a single controller and di-
rectly connected I/O the answers to questions like this 
depend mainly on the controller’s cycle time. However, 
even in the simple case of one PLC cyclically processing 
a signal the calculation of possible delays results in a 
spectrum rather than a single value. In the easiest case, 
this spectrum would turn out to be uniformly distributed. 
If the PLC and the PLC-I/O-card use independent (i.e. 
not exactly synchronized) cycle times, the overall struc-
ture definitely becomes more complex. If there are sev-
eral processes involved within one system, the complex-
ity of the latter increases; thereby an exact synchroniza-
tion of the same processes turns out to be highly 
unlikely. Access conflicts and queuing times lead to ad-
ditional non-deterministic delays.  

Where distributed systems with controllers communi-
cating with I/Os over networks are concerned the prob-
lem is even harder. Here, the network delay (typically 
not given by a constant value but by a distribution) has 
to be taken into account. As soon as only one single con-
troller with an I/O-module coupled by Ethernet is in use, 
the delay time of the total system emerges to a distribu-
tion whose determination needs formal analysis [1]. 

In order to avoid infeasible demands on the control 
system hardware, which are often entailed by worst-case 
analyses, the observed properties might be relaxed by the 
introduction of probabilistic bounds. This leads to prop-
erties like: “With a probability of at least 99.9% a reac-
tion to a change in a sensor value will be issued within 
200ms.” or ”A change in a sensor value that stays active 
only for a time interval (pulse) of 5 ms is detected by the 
controller in 85% of all cases.”  

Simulation is infeasible to check properties like this 
on a complex system, since a probabilistic solution will 
need a very long simulation time. The problem is even 
bigger if the analysis is extended from a performance 
check to a detailed reliability analysis where the possi-
bilities of failures in the components are considered in-
dividually during the analysis. Thus, the system under 
consideration contains very short cycle times of a con-
troller together with very long mean times between fail-
ures (MTBFs) of the components. 

The formal description of the considered systems 
leads to models based on time, stochastic distributions 
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and probabilistic choice. A formal technique providing 
the means for the description and analysis of systems 
and properties like the ones described above is Probabil-
istic Model Checking (PMC [2]). In the presented work 
PMC is applied to delay time analysis in Networked 
Automation Systems given different settings and net-
work failures. The studied systems are of a discrete event 
type. The properties to be checked upon are not directly 
related to system failures or delays, but to the loss or de-
lay of process relevant information.  

The paper is structured as follows: In the next section 
requirements for and occurring types of signals in dis-
crete event control systems (DECS) are discussed. The 
third section furnishes an explanation of the modeling 
approach, and the fourth section contains a case study  
demonstrating the possible use of PMC for the assess-
ment of the reliability of distributed network based 
automation systems. In the fifth and final section the 
conclusion will be followed by an outlook on further 
work within the framework of the presented approach. In 
comparison to former works [1], the modeling approach 
not only got developed further, but also it will be applied 
in a full case study and is enriched with a new module 
concept.  

 

2. Requirements and Signals in DECS 
 

2.1.  Classification of Requirements 
Requirements on classical continuous control systems 

are transferable to a generic description level (compensa-
tion of disturbances, adjustment of the control variables). 
Therefore, the considered system can be evaluated along 
the lines of generic quality metrics. This is not, however, 
possible in the case of discrete event systems control, 
where it is possible to evaluate the degree of problem 
specific demand satisfaction. From there on specific 
quality values can be derived. Then, an abstraction of the 
problem descriptions to a multitude of templates makes 
it possible to categorize different requirements. 

In general, all requirements for DECS can be reduced 
to two general properties: value correctness and temporal 
correctness [3]. These can be further split up into two 
corresponding questions: Will the system respond to an 
input change with the correct output change (value cor-
rectness)? and Will it do so within the correct time 
bounds (temporal correctness)? 

Value correctness, in the DECS case, is determined 
mainly by the control algorithm itself (the correct func-
tioning of sensors and actuators is preliminary). In the 
context of the presented work, the correctness of the con-
trol algorithms is taken as a given. When it comes to 
temporal correctness, the multitude of different require-
ments can be mapped down to three cases: 

1. Maximum and minimum (delay) times, e.g. the re-
sponse time passing between the activation of an 
emergency button and a reaction. 

2. Distribution: With which probability is it possible 
to react to a signal within x seconds? 

3. Differences, distances: Time difference between the 
times of arrival of two consecutive data packets or 
the probability of these packages arriving in the 
correct (original) order. 

 
2.2. Types of Signals 

When the question of  breakdowns in redundant data 
networks is dealt with, it does not suffice to know about 
the probability of the occurrence of one specific break-
down. Rather, the time necessary for the determination 
of the breakdown itself and the additional time needed to 
regenerate the information lost during this breakdown 
must be included. Finally, the probability that informa-
tion is lost entirely has to be considered; the probability 
of information not arriving within a given time frame 
must be determined. 

τ fixedτ → ∞

τ min signal may change

I)

III)

II)
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Figure 1. Types of Signals. 

In a discrete automated control system, there are three 
kinds of signals to be discussed (cf. Figure 1): 

1. A signal which stays active until it is processed 
(and necessary activities are consecutively carried 
out), for example the emergency stop. After it has 
occurred, it will not be reset until the message has 
been received and an action has taken place. 
Question: When will the signal be discovered? 

2. A signal which is active only for a fixed time pe-
riod τfixed. After that period the information is lost if 
it has not been read out. An example of this type of 
signal is that given when a metallic object passes an 
inductive sensor. 
Question: Will the signal be discovered? 

3. The combination of the above mentioned signals,  
for example  one which changes its value and keeps 
this new value until the next change or at least for 
τmin. Questions:  

a. Will the signal change be discovered before it 
changes again? and 

b. When will a signal change be discovered? 

3. Modeling approach 

The networked automation system under considera-
tion consists of one or more controllers connected to the 
process by a network built of Switches and I/O-modules. 
The components exchange signals and information using 
TCP/IP. Some components exist more than once and the 
model of the system has to be scalable in an easy way. 



Therefore, it makes sense to model the different compo-
nents separately and then connect them to build the sys-
tem discussed. 

For the construction of the individual components 
probabilistic timed automata (PTA) as well as the 
method of digital clocks [4] are used. This offers the 
possibility to eliminate non-deterministic decisions 
through the reduction of the time axis to a set of discrete 
time steps. In the course of the experiment, all relevant 
decisions (transitions) are fired synchronously. Thus, the 
model no longer records the exact time of occurrence, 
but only the fact that an event occurred within the last 
time step. In some systems, though, it is not possible to 
identify an optimal time increment at all, so that each 
participating subsystem executes one and only one ac-
tion. If the time increment is chosen to be smaller than 
the shortest (time) difference in between two successive 
system changes, the size of the model tends to increase 
exponentially.  

In the following sections, Probabilistic Model Check-
ing will be introduced and the chosen system model will 
be presented. Then, the problem of the initial states will 
be discussed, and the property formulation in PCTL 
(Probabilistic Computation Tree Logic) will be intro-
duced. Finally, the module concept will be described. In 
the respective sections the coding in PRISM (a model 
checker from the University of Birmingham, [5]) will be 
interlaced.  

 
3.1. Probabilistic Model Checking 

If model checking [6] is to be used, a model of the 
system has to rely on formal description. The properties 
under observation are also defined in terms of formal 
logic. These two descriptions are input to a model check-
ing algorithm that checks whether the properties hold on 
the system (cf. Figure 2). System and properties are dealt 
with separately from one another; thus, a change in the 
system affects only the system model, a change in the 
properties only the formal properties. 
 

System Properties

modeling formalization

System model formal properties

Model checking

result

 
Figure 2. Workflow of model checking. 

The main advantage of model checking is the possi-
bility of complete coverage of all possible evolutions of 
a system (as opposed to a subset only, which is all that 

can be provided for in the cases of simulation and test-
ing). The main drawback is, however, that the state space 
to be covered tends to increase very quickly with an in-
creasing complexity of the model (state space explosion 
problem). 

The state space explosion can be avoided to some ex-
tend by the application of proven modeling rules. That is 
why a strictly hierarchical programming and the use of a 
broad amount of synchronization techniques are recom-
mended for the description of distributed systems.  

In the case of PMC, the nonrecurring termination con-
dition must be considered: In a cycling problem, the 
probability of an event taking place repeatedly over time 
can be expressed mathematically as a geometrical pro-
gression which indeed leads to a probability being one in 
an infinite time; that means the probability of any event 
in a cycling problem will be either one or zero – true or 
false. Therefore, the first condition to a probabilistic 
model must be that it will terminate after it reaches the 
event supervised. Furthermore, each possible arrange-
ment must be depicted in that very first cycle, and the 
model must recognize by itself that the event took place. 
This prerogative changes the design process fundamen-
tally: the separation between model and properties must 
be abolished and replaced by a new formal design proc-
ess (cf. Figure 3). 
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Figure 3. Workflow of probabilistic model 
checking. 

 While the formalization process for the properties 
stays the same as in Figure 2 (shown in the middle of 
Figure 3), the construction of the model must be 
changed. The first possible way to do so is shown with 
dashed lines on the left-hand side of Figure 3: The ge-
neric system model gets convolved with the specific 
formal properties, which amounts to a reduction of the 
generic model and the inclusion of termination condi-
tions. The second possible way, given in dotted lines on 
the right-hand side of Figure 3, is to include the proper-
ties already in the modeling task. This leads to much 
more refined models, but requires the engineer to rebuild 



his models for each possible case. In this work, the sec-
ond (dotted) approach is used. This will provide a deep 
understanding of what is an optimal model on the ground 
of which a suitable reduction algorithm can be proposed. 
In the further course of this project the experience – 
which will be gathered up to this point in future – in 
dealing with this kind of modules should lead to a suit-
able reduction algorithm and therefore towards the dot-
ted (left) branch. 

 
3.2. System model 

Finite automata with extensions for timed and prob-
abilistic behavior are used to build the system model. A 
finite automaton as shown in Figure 4 consists of states 
linked by conditional transitions. 
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Figure 4. Finite Automaton. 

For any state Sn in an automaton with m possible post-
states connected via transitions t1 to tm with transition 
conditions c1 to cm respectively the following must hold:  

 
1. There are no two conditions active at the same 

time: 
 

, [1.. ];
i j

i j m i j
c c false

∈ ≠
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2. The disjunction of all conditions must cover the 

total state space:  
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i
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The combination of these two preliminaries implies 

that there is always one and only one active transition 
within a given module. 

For reasons of time scaling, a transition should only 
become active when a well-defined period of time has 
passed. The accomplishment of that can be assured by 
the employment of timed automata (Figure 5a).  
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Figure 5. Timed Automaton. 

When the time t has passed, all transitions, which are 
labeled with the sync-signal t, will be activated immedi-
ately. In this work two restrictions are made: First, there 
is only one clock (i.e. time) on which all processes are 
synchronized (instead of several different sync-times 
which could be used with a general timed automaton) 
and second, the condition of the transition following will 
be evaluated in the same moment as the sync-transition 
becomes activated. Given these assumptions, it makes 
sense to simply omit the intermediate states S’n and use 
the graphical representation shown in Figure 5b. 

The next step of extension leads directly to the prob-
abilistic timed automata (PTA [7], cf. Figure 6a). In this 
probabilistic case, the transitions are assigned a probabil-
ity [0..1]ip ∈ , with: 
 

[1.. ]
1i

i k
p
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=Σ  (3) 

In other words, the deterministic automaton is 
enlarged by a non-deterministic choice weighted by 
probabilities pi. As the intermediate states S”n are of 
transient nature, the graphical representation shown in 
Figure 6b is used.   
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Figure 6. Probabilistic Timed Automaton. 

The difference between a non-deterministic choice 
out of two paths and a stochastic choice out of two paths 
weighted each with a probability of 50% is that PMC 
will consider each path of the stochastic choice with a 
probability of 50% while it will separate the non-
deterministic choice in two independent automata, once 
with the first and once with the second path. In this case, 
the choice is eliminated and the associated probability 
will be 100% for the respective transition. Yet, there ob-
viously remains a difference between that probability 
and the 50% in the case of a stochastic choice.  

Note: Probabilities which equal one and conditions 
which are true for all times are for reasons of graphical 
simplification not written into the transitions. The 
PRISM code of the system model itself is constructed as 
follows: 

[Pr] conditions  assignments; 

[Pr] conditions  p1:assignments + p2:assignments + …; 



[Pr] is the synchronization signal mentioned before. If 
it is omitted, then the determinism of the sequence is de-
stroyed. Conditions are a predicate formulation com-
posed of one or more transition conditions ci (or their ne-
gated partners) coupled by binary operators. Assign-
ments are value assignments to one or more variables, 
which can be functions of the variables’ values valid just 
before the transition got active. Finally, p1, p2 … are the 
probabilities used in the probabilistic automata. 

 
3.3. Initial state 

One of the most important differences between simu-
lation and model checking is that model checking will  
definitely reach all the possible states at least once, while 
in simulation even after a long period of time this might 
not be the case. On the other hand, it would be ridiculous 
to run model checking more than once, if it is possible to 
reach every possible state by means as simple as the 
right definition of the initial conditions. This makes it 
much easier to achieve the previously reclaimed charac-
ter of a model checking algorithm to terminate after 
reaching the state, the user is testing on. The right (and 
complete) assignment of the initial states is difficult. If 
there are at least two processes (modules) which do not 
cycle using the same cycle time, there will be a large 
number of possible drift times, especially if they are not 
started paralleled (synchronized). In the ideal case there 
are only two drifting modules and all possible drift times 
will occur with the same probability. In this case, the ini-
tial condition can be found easily by pre-adaption of an 
“equally randomized initial state” cycle just before the 
first time step in one of the two modules. This is shown 
in Figure 7 and can in PRISM best be coded as follows: 

[P] !pre&var<varMax  1 / (varMax - var):(pre = true) +  
     (var – varMax - 1) / (var - varMax):(var’ = var + 1); 

[P] pre&(!pre2|!pre3|…|!pren)  true; 

 [P] is the sync-operator, pre is the binary variable 
serving as a detector of the completion or non-
completion of the initial process. !pre is the negation of 
pre. pre2… pren are the detection variables of synchro-
nized modules, as the automaton would deadlock, with-
out this command (cf. section 3.2). 
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Figure 7. Equally randomized initial state. 

 
 

3.4. Property formulation in PCTL 
PMC uses an extension of CTL (PCTL – Probabilistic 

Computation Tree Logic, [8]) to specify properties of 

systems described by Markov models. Typically, these 
properties are composed of atomic propositions or predi-
cates on the variables in the model. Strictly speaking, 
there is a distinction between state and path constructs,  
but for the sake of this work it may be neglected. Nor-
mally, PCTL formulas evaluate to create a Boolean 
value. Yet, it is often useful to know the actual probabil-
ity rather than merely assure a probability above or be-
low a given bound. For that reason several implementa-
tions of PMC facilitate this functionality additionally. 
PRISM allows properties of the following form: 

P=? [ expr1 U expr2 ] 

P=? represents the probability to be determined, expr1 
and expr2 are predicates which evaluate to Boolean ex-
pressions. This command has to be read as follows: De-
termine the probability, that expr1 is true (at least as 
long) until expr2 becomes true, and expr2 becomes true. 
Note: There is no need for expr2 to stay true, it might 
become false and true again, which can not be deter-
mined using this operator. The easiest way to use this 
operator is to replace expr1 by true and only work on the 
second predicate, expr2: 

P=? [ true U expr2 ] 

Starting from a given system model and a desired set 
of properties, the PRISM code must be generated. It is 
important that in the course of that action the algorithm 
terminates as soon as possible. There are two main cases 
to be distinguished: 

a) If the main interest lies on the duration – e.g. the delay 
time – it is necessary to wait until this process is fin-
ished, or (for practical purposes) until a maximum time 
bound has been reached. This can be done using the op-
erator 

P=? [ true U Runtime = Lf ] 

where Lf is a parameter – PRISM has to check for 
each value of Lf in a given range – and Runtime is a 
variable which gets assigned by the model: When the 
desired property occurs, the value of the time counter 
will be assigned to that variable. It is possible to check 
on the counter variable directly; yet, in that case the re-
sult would be the integral of the distribution function 
from Lf  to infinity.  

b) If the main interest lies on the probability of an over-
all occurrence of the desired property, then the calcula-
tion should not be terminated by the incidence of the 
property itself. This task can be achieved only by check-
ing for a significant time period, namely the one within 
which the event can take place once and will not take 
place for a second time, as the probability check can 
only determine whether something occurred or not. To 
solve this problem it is important to cover all possible 
initial states in the first cycle (cf. section 3.3) and termi-
nate the automaton after finishing this one cycle.  



3.5. Module concept 
If the discussed characteristics of the model to be de-

signed are taken into consideration, the code being im-
plemented can be classified towards three categories: 

1. Basic functions 
2. Architecturally based assignments 
3. Signal tracking. 

The ‘basic functions’ category is featured by the fact 
that those can be implemented independently from the 
specific problem descriptions or the properties to be ob-
served. An integral part of this category is e.g. the basic 
function of a sensor to return its signal’s value if it is 
asked for it as well as the cyclic run of a programmable 
logic controller (PLC). These basic functions must be 
endorsed problem-specifically. The PLC – for example – 
must know, which I/O-modules it has to scan and (if this 
should be modeled explicitly) what has to be done with 
the signals returned by the I/O-modules. Since these 
specifications as well as information like which switch a 
specific I/O-module are connected to have in common 
their architectural nature, they constitute the second 
category. The third category is directly linked to the 
properties observed. All modules which are tracking the 
completion of properties are therefore part of this third 
category. They are necessary as PCTL (in the chosen 
syntax) does not facilitate of specific sequence of states.  

Ideally, it is possible to design the modules of the 
three categories independently from one another. How-
ever, this is possible only for few examples and requires 
a rather high amount of available memory (RAM) capac-
ity. In all other cases a reduction process has to be added 
after the design using these three categories.  

4. Case study 
The structure of the case study to be discussed is 

shown in Figure 8. In this example the investigation con-

centrates on the superimposition of different cyclic proc-
esses.  

The system consists of two PLCs which integrate a 
controller with a cycle time of 3.5ms. Each of the PLCs 
has a connected I/O-board with an independent cycle of 
5ms. These two modules (PLC and corresponding I/O-
board) are not synchronized and communicate via a 
shared memory. While PLC1 is connected to switch 1, 
PLC2 is connected directly to switch 2. The system also 
contains 8 digital I/O-boards to which one or several 
sensors and actuators are connected. In this setting the 
I/O-boards 1 to 4 are connected to the first Switch, while 
the I/O-boards 5 to 8 are connected to the second Switch. 
The two switches are connected to one another as well. 

The PLC on the left-hand side processes the sensor 
information of the I/O-boards 1 to 5, while the PLC on 
the right hand side processes the information of the I/O-
boards 4 to 8. All I/O-boards are sampled cyclically. 

Note that in the underlying client server protocol the 
PLC (=Client) sends requests to the I/O-modules 
(=Server) and the latter “answer” only to these requests, 
i.e. the I/O-boards do not sent any information by them-
selves. To dispatch a data packet the following delays 
occur:  

• 0.25ms to pack (send) and unpack a packet. 
• 0.06ms per Switch to be passed.  
As there is no method implementing a queue module 

yet (cf. chapter 5) the transference over a switch has 
been assumed to be waiting time free. For the discussion 
of a non-constant switching time see [1].  

If one of the digital I/O-boards receives a request, 
1.5ms pass before the accompanying answer returns over 
the network – indeed, only if the I/O-board has to proc-
ess no other request. This can be the case for I/O-boards 
4 and 5, as both of them have to process requests from 
both PLCs. If an I/O-board is processing a request when 
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Figure 8. Case study.



another request arrives, the second request must wait un-
til the first request has been treated.  These attendance 
periods create further delays. 

It is assumed that PLC1 activates an actuator located 
on I/O-board 5 following the occurrence of a signal 
change at a sensor which should be located on I/O-Board 
4. The signal appearing at I/O-board 4 has signal type I 
characteristics, i.e. that signal will not be reset until the 
corresponding action took place. The property to be de-
termined is the actual delay time passing between the 
signal change at I/O-board 4 and the activation of the 
actuator at I/O-board 5.  

In the beginning of their cycle, the PLC-I/O-boards 
are sending the requests to the I/O-boards they are asso-
ciated with in numerically ascending order, i.e. PLC-I/O-
1 sends first a request to I/O-board1, then to I/O-board2, 
-3, -4 and -5; PLC-I/O-2 sends a request first to I/O-
board4, then -5, -6, -7 and -8. This functional peculiarity 
justifies the negligence of a detailed network model. By 
this, the I/O-boards 1, 2, 3, 6, 7 and 8 appear only indi-
rectly in the model, e.g. they can be neglected in the cal-
culations (and therefore in the PRISM code). The same 
is true for the second PLC located on the top right hand 
side of Figure 8. As the cycle of this PLC is independent 
of its I/O-board cycle and this PLC is not part of the later 
discussion, it will be neglected too.  

PLC1, the delay time determination and the basic 
modules can be implemented as module type 1 (cf. sec-
tion 3.5). This means that they can be implemented in-
dependently of the specific task. Special algorithms are 
required for the I/O-boards which indicate the linking 
structures (module type 2). By reason of the relatively 
simple case study the complete signal tracking (module 
type 3) can be realized in one single independent mod-
ule. Also of module type 3 is the termination module. In 
the following the single modules are briefly introduced. 

In addition to these basic settings the incidence of a 
network failure is implemented. In this case, the network 
(or part of it) is not available for 4ms. The failure can 
occur with a probability of 10-4. If the network is down, 
this can mean, that there is congestion, a rewriting of the 
IP-table, a reboot of a switch or the specific I/O-board 
and so on. All these cases are modeled as the same 
event. It is assumed, that the destination for any IP-
packet is not available in the net-down states. Conse-
quently, if an I/O-board tries to send a package to the 
network in this period, it remains trying to sent this 
package several (at the maximum of 15) times. The 
maximum trial time can be calculated to be  
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τ τ μ
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As a resent in the IP-network will occur after (2n-1) 
times 51,2 μs (plus 9,6μs, with n the number of trials), 
the maximum trial time would be 370ms. This however 
is much more than the net-down time of 4ms (the prob-
ability of reaching 370ms is (10-4)93≈0). The I/O-board 

therefore waits until the network is available again and 
processes afterwards.  

The PLC-I/O-boards are able to receive data at all 
times. A package’s information is passed to the shared 
memory immediately within the processing time of one 
time step. This is true even for late-packages.  

It is assumed, that the relative time drift in between 
the modules is less than one time step over the total time 
period. The given delay times are educated guesses 
based on lab measurements of similar structures. 

 
4.1. Detailed Modules 

The module of the PLC as well as the core modules of 
the both PLC-I/O-boards are built from ring counters (cf. 
Figure 9) which count from the initial value up to a 
maximum value and start again with 0.  
As in all following state charts, Figure 9 does not show 
the reset-transitions which are activated by the termina-
tion-module and lead from each state of the chart to a 
predefined termination-state. These transitions are not 
shown as they would make the state charts extremely 
complex without gaining any more important behavioral 
information.  

count:=0 t

count < CountMax-1

Inc(count)

t

t

count = CountMax-1  
Figure 9. State chart of a ring counter. 

For the delay time determination the same module 
was used, indeed, without reset when the maximum time 
(CountMax-1) is reached. In this case the counter re-
mains on its maximum position.  

For both the PLC-I/O-boards, as well as for the PLC, 
initial state creation automata were realized as discussed 
in section 2.3 (cf. Figure 7). It is assumed, that the drift 
within the different processor time bases is less than one 
time step (0.25ms) within the calculation time (approxi-
mately 25ms).  

As the network wasn’t modeled explicitly (but only 
accounted for by a constant time delay) the I/O-boards 
input modules must provide two functions: First, they 
must "take up" a new request in dependence of the 
counter variables of the PLC-I/O-boards. Second they 
must buffer the request if a second request arrives, be-
fore the first one has been processed. Figure 10 shows 
the accompanying state chart.  

Already in this example, it is slightly appreciative 
why realizing queues in the straight forward variation 
leads to huge state spaces: If there would be several 
(possibly in short cycles requesting) PLCs – instead of 
two PLCs which request within the run time just twice 
using a relatively large cycle – the state chart (and with it 
the automaton) would be by far more complex. The ac-



companying state explosion can then only be shrouded 
by using another abstraction level in the state charts rep-
resentation. If queues as they appear, e.g. in switches, 
were modeled in this visual, direct way, the state explo-
sion would make the models absolutely no more analyz-
able (under the constraints of the available software 
tools). Possible alternatives to solve this problem are be-
ing discussed actually. 

No request
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t request
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t request
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In=2

request 
from PLC1

else

In=3

I/O sends to PLC2

t

t

t

t

t

I/O sends to PLC2

t

I/O sends to PLC1

 
Figure 10. State chart of the I/O-board input 
queue. 

In principle, the two PLC-I/O-boards also need an in-
put buffer. However this was neglected in this imple-
mentation, as solely one module for each of the requests 
was created, which detects whether or not the corre-
sponding signal returned already. Note: In this imple-
mentation the modeled data packages have fictive char-
acter, i.e. there is no information available on what data 
they are carrying and if the request really arrived. This 
information is modeled indirectly by the above discussed 
modules. The corresponding state chart is shown in 
Figure 11. 

else

V=1

t

t request
sent

t

else

V=0

t

answer
reseived  

Figure 11. State chart of the PLC-I/O-request-
back-module. 

While the “request sent” is created indirectly by the 
value of the corresponding PLC-I/O-counter, the “an-
swer sent” is generated by the I/O-board (cf. Figure 12).  

ct:=0 Inc(ct)t
t

ct<4

t
t

ln=0

ln>0 ct:=5
answer sent

t

ct<4

 
Figure 12. State chart of each of the I/O-boards. 

The I/O-board acts as server, i.e. it remains at state 0 
until a request (ln>0, see also Figure 10) has arrived. 
From there it works as a ring counter.  

Finally, only the two signal tracking modules are ab-
sent. The first one is the already mentioned termination 
module. This module consists of two states: work and 
terminate. Initially, the automaton is in the work state 
and stays there until either the maximal signal delay time 
has elapsed or the actuator has been activated. The sec-
ond signal tracking module "observes" the information 
passing through the system. The first state transition is 
triggered, if the packet, sent by the sensors I/O-board has 
arrived at the PLC-I/O-board. The next two state 
changes occur, as soon as the PLC cycle reaches its 
"read"-state (first change) and the ensuing “write” state 
(second change). The consequently following step is the 
arrival at the I/O-board 5. As the PLC-I/O uses the same 
request to write out values as to ask for the actual sensor 
values, writing-out isn’t modeled at all, but only tracked 
by the module. The final (state changing) transition of 
the tracking automaton is activated when I/O-board 5 
successfully processed the request. By passing this tran-
sition, the “delay time variable” is set as discussed in 
section 3.4. This state is used by the termination module 
to terminate the calculation. 

Under the consideration of network failures, the state 
chart of the PLC-I/O-boards change from a single ring 
counter (cf. Figure 9) towards the state chart shown in 
Figure 13. The difference is given by the two blocks in 
the middle of Figure 13. For all the packages to be send 
(0<count<6) the I/O-board tries to send a package until it 
has been sent. 

ct:=0 Inc(ct)t
t
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t

count=CountMax-1
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Figure 13. State chart of the I/O-Boards under 
consideration of network failures. 

Obviously, the state charts of the I/O-boards must be 
expanded also (as the answer can’t be send while the 
network is absent). This is shown in Figure 14. 

ct:=0 Inc(ct)t

t

ct<4

t
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ln>0 ct:=5
answer sent

t

ct=4 &
netdown
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¬ netdown
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netdown

t
¬ netdown

t t

 
Figure 14. State chart of an I/O-board under 
the consideration of network failures. 



The state chart of the net-down module is shown in 
Figure 15. While everything is fine (NetDown=0) the 
network may fail in each time step with a probability 
pNetDown=10-4 or remain in the OK-State with a probabil-
ity of (1-pNetDown). If the transition to the left gets acti-
vated, the automaton passes to the state on the right hand 
side of Figure 15 and stays there until the Net-down-time 
of 4ms has passed. Afterwards it (normally) returns to 
the state on the left hand side. From there another failure 
may occur immediately (with probability pNetDown). 

NetDown:=0
Inc (NetDown mod
(Netdowntime-1))

pNetDown

1-pNetDown
t t

NetDown<Netdowntime-1

t

NetDown=Netdowntime-1

pNetDown
1-pNetDown  

Figure 15. State chart of the net-down module. 
 

4.2. Results 
Figure 16 shows the probability of different delay 

times. The calculated values are marked by little crosses, 
connected by linear interpolation. 
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Figure 16. Time between occurrence and reaction. 

The value of 18% at 15ms means that the probability 
for a delay time between 14.75ms and 15ms is 18% mul-
tiplied with the synchronization time step width of 0.25 
what equals 4.5%. 

The shortest delay time (7ms) originates as shown in 
Figure 17. In this case, the signal change occurs just at 
the moment when PLC1-I/O’s counter variable equals 4 
and there is no waiting queue at I/O-board4. Further-
more, the PLC1’s cycle itself is reading just after the an-
swer from I/O-board4 has arrived. 

Starting from 12ms the response times of PLC and 
PLC-I/O cycle harmonize no more. The length of the 
plateaus is caused by the answer time of the I/O-board 
(1.5ms = 6 time steps) and the PLC-I/O-cycle-time (5ms 
= 20 time steps). The plateau starting at 17ms combines 
unfavorable waiting periods in the I/O-board with cycles 
not in harmony of PLC and PLC-I/O. The maximum de-
lay time is 18.25ms. This worst case originates as shown 
in Figure 18. 
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Figure 17. Minimum delay time. 

In this case, the signal change occurs exactly when 
PLC1-I/O’s counter variable equals 5. Therefore, the next 
request will arrive 19 time steps (4.75ms) later. Unfortu-
nately, there is a waiting queue at I/O-board4, as PLC-
I/O-board5 has requested just before. 2.75ms later, the 
information gets sent back to PLC1. However, in the cor-
responding cycle the read state just has passed. Hence, 
another delay of 3.25ms is added. After being processed 
by the PLC itself, the information has to wait until PLC1-
I/O’s counter variable equals 5 and it can be sent to I/O-
board 5. Arriving there, the request from PLC2 was faster 
again and therefore another wait-time of 1.5ms is occur-
ring, before the information is being processed by I/O-
board 5 and finally handed over to the corresponding ac-
tuator. Obviously, this is not the only case resulting in 
the maximum delay time, as some of the blocks (e.g. 
PLC1’s cycle) may be shifted in relation to the other cy-
cles by a small time (e.g. 1 time step to the right) without 
changing the drafted frame.  

In conclusion it can be adhered, that 88.5% of the de-
lay times are in the range between 12 and 16.75ms. Fur-
thermore, it can be guaranteed, that in 99% of all cases 
the delay stays below 17.5ms. Additionally, and for most 
applications most important, the maximum response 
time is proven to be 18.25ms. On the other hand – also 
interesting for safety reasons – there will be no reaction 
earlier than 7ms after the occurrence of the signal 
change. 
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Figure 18. Maximum delay time. 



The second experiment to be discussed is the influ-
ence of network failures (as defined above) on the delay 
time. Figure 19 shows the comparison of the graph with 
and the graph without failures (logarithmic scale). The 
differences between the two graphs (with failures minus 
without failures) are given in Figure 20 (linear scale). In 
relation to the absolute numbers, the two graphs are 
nearly the same up to 17ms despite some lump differ-
ences in the beginning.  

Starting from 17.25ms, the number of packages being 
delayed for the corresponding duration has increased by 
about 8%. Whereas there are no packages being faster 
than before, there is quite a good number of late pack-
ages now. The probability of no delay times longer than 
17.5ms has decreased from 99% in the undisturbed case 
to 94%. Even worse, the probability of a package being 
delayed for more than the above mentioned maximum 
delay of 18.25ms is 5.1% and therefore in a significant 
range. 
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Figure 19. Delay time with network failures. 
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Figure 20. Difference in between delay times 
(failure minus without failure). 

5. Conclusion and Outlook 
The reliability of distributed network based automa-

tion systems can be discussed by using PMC as shown 
by a case study. Thereby worst case analyses are suc-
cessfully avoided.  

When PMC is used to analyze the behavior of net-
work-based automation systems, the choice of properties 
to be proven influences the model to be formulated. 
Hence, a sharp separation of model and property formu-
lation leads to both a huge state space and a huge verifi-
cation time. Therefore, a new modular modeling ap-
proach considering the properties during the formulation 
of the system model has been presented.  

The next milestones of the introduced work are lo-
cated in a refinement of the introduced application ex-
ample as well as in the discussion of possibilities to sen-
sibly implement queues (i.e. without the discussed state 
explosion). Furthermore, the advantages of different 
PLC-I/O behaviors and of the use of event based instead 
of polling mechanisms will be discussed. Last not least 
the elaboration of experience will lead to a suitable re-
duction algorithm and the possibility of a computer 
based design process.  
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