
Greifeneder, J.; Frey, G.: Dependability analysis of networked automation systems by probabilistic delay time analysis. Proceedings of the 12th IFAC Symposium on Information Control Problems
in Manufacturing (incom 2006), St. Etienne, France, Vol. 1, pp. 269-274, May 2006.

DEPENDABILITY ANALYSIS OF NETWORKED AUTOMATION SYSTEMS
BY PROBABILISTIC DELAY TIME ANALYSIS

Jürgen Greifeneder and Georg Frey

University of Kaiserslautern, FB EIT, JPA²
Erwin-Schrödinger-Str. 12, D-67653 Kaiserslautern, Germany

{greifeneder | frey}@eit.uni-kl.de

Abstract: The dependability of an automation system is a quality that depends on all the
systems components. The introduction of non-deterministic networks to the automation
field leads to new questions in the analysis of the resulting systems. For the analysis of
systems containing non-deterministic components, probabilistic model checking (PMC)
is a promising formal approach. This paper investigates the application of existing tech-
niques and tools from PMC to the analysis of delay times in networked automation sys-
tems under the consideration of component failures. A case study shows how properties,
relevant for the reliable functioning of an automation system, can be checked. Copyright
© 2006 IFAC

Keywords: Markov decision process, manufacturing, control, reliability analysis, net-
works, model checking.

1. INTRODUCTION

Dependability is defined by IFIP WG-10.4 as “the
trustworthiness of a computing system which allows
reliance to be justifiably placed on the service it de-
livers” [http://www.dependability.org]. Dependabil-
ity is often regarded as a set of properties such as re-
liability, availability, safety, fault tolerance, robust-
ness, and security. For the area of automation sys-
tems to assess dependability a system of hardware
and software (of possibly several layers) has to be
taken into account. With the advent of networked
systems, this problem becomes even more compli-
cated, since now the influence of the network and its
components on the dependability of the overall sys-
tem needs attention. The network not only adds (pos-
sibly non-deterministic) delays but also components
that may fail (connections, switches, routers …).

Modeling and analysis of automation systems there-
fore requires not only detailed knowledge about their
functional aspects, but also about their real time be-
havior and the possible component failures. Control
algorithms need to communicate with the process
hardware (i.e., sensors and actuators often abbrevi-
ated I/O for inputs and outputs) within bounded time
intervals as the control algorithm will fail, otherwise.

For a dependable automation system a specification
of properties like “A reaction to a change in a sensor
value will be issued within 200 ms.” might thus arise.

In classical structures using a single controller and
directly connected I/O the answer to questions like
this depends mainly on the cycle time of the control-
ler. Considering distributed systems with controllers
communicating with the I/O over networks the prob-
lem is much harder. Here the network delay (typi-
cally not given by a constant value but by a distribu-
tion) has to be taken into account. To avoid worst-
case analysis that often leads to infeasible demands
on the control systems hardware the properties could
be relaxed by introducing probabilistic bounds. This
leads to properties like: “With a probability of at
least 99.9% a reaction to a change in a sensor value
will be issued within 200ms.”

To check properties like this on a complex system,
simulation is infeasible since a probabilistic solution
will need a very long simulation time. The problem
becomes even worse if the analysis is extended from
a simple performance check to a detailed reliability
analysis where the possibilities of failures in the
components are considered during the analysis. In
this case the system under consideration contains

Greifeneder, J.; Frey, G.: Dependability analysis of networked automation systems by probabilistic delay time analysis. Proceedings of the 12th IFAC Symposium on Information Control
Problems in Manufacturing (incom 2006), St. Etienne, France, Vol. 1, pp. 269-274, May 2006.

very short cycle times of a controller together with
very long mean times between failures (MTBFs) of
the components.

The formal description of systems like this leads to
models containing time, stochastic distributions and
probabilistic choice. A formal technique providing
the means for the description and analysis of systems
and properties like the ones described above is Prob-
abilistic Model Checking (PMC). PMC uses an ex-
tension of CTL (PCTL – Probabilistic Computation
Tree Logic, (Hansson and Jonsson, 1999) to specify
properties over systems described by Markov mod-
els. Model checking algorithms and tools are avail-
able (Kwiatkowska et al., 2002; PRISM-Website;
Kwiatkowska et al., 2004). In the presented work
PMC is applied to delay time analysis in Networked
Automation Systems under consideration of compo-
nent failures. A key idea is that the nature of signals
in automation systems is taken into account
(Greifeneder and Frey, 2005). The properties to be
checked are not directly related to system failures but
to the loss or delay of process relevant information.

The paper is structured as follows. The next Section
explains the PMC approach and the used models in
some detail. The approach is illustrated at a case
study in Section 3. Section 4 concludes the paper and
gives an outlook on further work.

2. PMC APPROACH

2.1. General approach

In model checking (Bérard et al., 2001), a model of
the system is build using some formal description. In
addition, the properties to be checked are formalized
using some kind of formal logic. These two descrip-
tions are input to a model checking algorithm that
checks whether the properties hold on the system (cf.
Fig. 1). System and properties are handled separately.
A change in the system affects only the system
model, a change in the properties only the formal
properties.

System Properties

modeling formalization

System model formal properties

Model checking

result

Fig. 1. Workflow of model checking.

The main advantage of model checking is the com-
plete coverage of all possible evolutions of a system
(instead of only a subset in simulation and testing).
The main drawback is that the state space to be cov-
ered tends to increase very fast with the complexity
of the model (state space explosion problem). This
can be avoided to some extend by the application of
proven modeling rules. That is why a strictly hierar-

chical programming and the use of a broad amount of
synchronization techniques are recommended for the
description of distributed systems.

In PMC, the nonrecurring termination condition must
be considered: In a cycling problem, the probability
of an event taking place repeatedly over time can be
expressed mathematical by a geometrical progression
which indeed leads to a probability being one in an
infinite time. That means, the probability of any
event in a cycling problem will be one or zero – true
or false. Therefore, the first condition to a probabilis-
tic model must be that it will itself check on the oc-
currence of the event supervised and terminate after-
wards. Furthermore, each possible arrangement must
be depicted in that very first cycle as otherwise only
part of the system’s behavior is considered. This
changes the design process fundamentally: the sepa-
ration between model and properties must be given
up resulting in a new formal design process (cf. Fig.
2). While the formalization process of the properties
stays the same as in Fig. 1 (shown in the middle of
Fig. 2), the construction of the model is changed. The
first possible way to do so is shown in dashed lines
on the left side of Fig. 2: The generic system model
gets convolved with the specific formal properties,
which amounts to a reduction of the generic model
and the inclusion of termination conditions. The sec-
ond possible way, given in dotted lines on the right
hand side of Fig. 2, is to include the properties in the
modeling task already. This leads to much finer
models, but requires the engineer to rebuild his mod-
els for each possible case. In this work, the second
(dotted) approach is used, as there must be a deep
understanding of what is an optimal model before a
suitable reduction algorithm could be proposed.

System Properties

modeling formalization

System model formal properties

Model checking

result

reduction

reduced
system model

System

modeling

System model

Fig. 2. Workflow of probabilistic model checking.

2.2. System model

The system model is built using finite automata with
extensions for timed and probabilistic behavior. In
this subsection the model is introduced over several
steps. A finite automaton as shown in Fig. 3 consists
of states linked by conditional transitions.

Sn

(Sn+1)1

(Sn+1)2

(Sn+1)m

…

c1

c2

cm

…

Fig. 3. Finite automaton.

Greifeneder, J.; Frey, G.: Dependability analysis of networked automation systems by probabilistic delay time analysis. Proceedings of the 12th IFAC Symposium on Information Control
Problems in Manufacturing (incom 2006), St. Etienne, France, Vol. 1, pp. 269-274, May 2006.

For a state Sn with m possible post-states connected
via transitions t1 to tm with transition conditions c1 to
cm respectivey the following must hold:

1. There are no two conditions active at the
same time:

, [1..];

i j
i j m i j

c c false
∈ ≠

∧ =∀ (1)

2. The disjunction of all conditions must cover
the total state space:

[1..]

i
i m

c true
∀ ∈

=∨ (2)

Together this means that there is always one and only
one active transition in a module.

For reasons of time scaling, a transition should only
become active, when a well defined time has passed.
That can be done, by using timed automata (Fig. 4a).

‚

Sn

(Sn+1)1

(Sn+1)2

(Sn+1)m

…

c1

c2

cm

…

(Sn)1

(Sn)2

(Sn)m

…

‚

‚

t

t

t

Sn

(Sn+1)1

(Sn+1)2

(Sn+1)m

…

c1

c2

cm

…

t

t

t

a)

b)

Fig. 4. Timed Automaton.

When the time t has passed, all transitions labeled
with the sync-signal t will be activated immediately.
In this work two restrictions are made: First, there is
only one clock (i.e. time) to be synchronized on (in-
stead of several different sync-times possible in a
general timed automaton) and second the condition
of the following transition will be evaluated in the
same moment as the sync-transition becomes acti-
vated. Using these assumptions, it makes sense, to
simply omit the intermediate states S’n and use the
graphical representation shown in Fig. 4b.

The next step of extension leads directly to the prob-
abilistic timed automata (cf. Fig. 5a). In this prob-
abilistic case, the transitions are assigned a probabil-
ity [0..1]ip ∈ , with:

[1..]

1i
i k

p
∀ ∈

=Σ (3)

In other words: the deterministic automaton becomes
enlarged by a non-deterministic choice weighted by
probabilities pi. As the intermediate states S”n are of
transient nature, the graphical representation shown
in Fig. 5b is used. To further simplify the
representation probabilities equal to one, and condi-
tions, which are true for all times are not written.
Note: The PTA definition above is compliant to the
one given in (Alur et al., 1999) for the case of dense
time steps. However, it differs from definitions used
by e.g. (Bérard et al., 2001) as here the transitions are
time triggered. The presented approach differs from
others constructing a finite-state quotient representa-
tion by the fact that discretisation is already done in
the modeling step while others (e.g. Henzinger et al.,

1992) use dense time in the model formulation and
discretize afterwards.

c1

Sn

t

(Sn+1)1,1

(Sn+1)1,2

(Sn+1) 1,k

…

p1

p2

pk
(Sn)1

‘‘

cmt

…

(Sn)m
‘‘

…

…

Sn

(Sn+1)1,1

(Sn+1)1,2

(Sn+1) 1,k

…

p1

p2

pk

cmt

… …

c1t

…

a)

b)

Fig. 5. Probabilistic Timed Automaton.

2.3. Property formulation

Dealing with failures in networked automation sys-
tems, the probability that information is lost at all
must be considered. That means: determining the
probability of information not arriving within a given
time frame. In an automated control system, there are
three kinds of signals and related questions to discuss
(Greifeneder and Frey, 2005):

Type 1: A signal that after it occurs will not be reset
until a corresponding action takes place. Question:
When will the signal be discovered?

Type 2: A signal that is only present for a limited
time. Question: Will the signal be discovered?

Type 3: The combination of 1 and 2: A signal that
changes its value with a probability pch and keeps its
value until the next change (at least for τmin). Ques-
tions: (a) Will a signals change be discovered before
another change occurs and (b) if yes, then when?

2.4. Model checking and formulation in PRISM

As mentioned in Section 1 PCTL is used to specify
properties in PRISM. Typically these properties are
composed of atomic propositions or predicates over
the variables in the model. Normally, PCTL formulas
evaluate to a Boolean value. However, it is often use-
ful to know the actual probability rather than just
check that it is above or below a given bound.
PRISM allows properties of the following form:

P=? [expr1 U expr2]

P=? represents the probability to be determined,
expr1 and expr2 are propositional formulations
which evaluate to Boolean expressions. This com-
mand has to be read as follows: Determine the prob-
ability, that expr1 is true (at least as long) until expr2
becomes true, and expr2 becomes true. Note: There
is no need for expr2 to stay true, it might become
false and true again, which can not be determined di-
rectly using this operator but e.g. by nesting probabil-
istic operators. The easiest way to use this operator is

Greifeneder, J.; Frey, G.: Dependability analysis of networked automation systems by probabilistic delay time analysis. Proceedings of the 12th IFAC Symposium on Information Control
Problems in Manufacturing (incom 2006), St. Etienne, France, Vol. 1, pp. 269-274, May 2006.

to replace expr1 by true and only work on the second
predicate, expr2:
P=? [true U expr2]

Starting from a given system model and a desired set
of properties, the PRISM code must be generated.
Doing so, it is important, that the algorithm termi-
nates as soon as possible. There are two principle
cases to distinguish:

a) If the interest is to check, how long anything lasts
– e.g. the delay time – it is necessary to wait until this
process is finished, or (for practical purposes) until a
maximum time bound has been reached. This can be
done using the following operator:
P=? [true U Runtime=Lf]

Where Lf is a parameter – PRISM has to check for
each value of Lf in a given range – and Runtime is a
variable which gets assigned by the model. When the
desired property occurred, the value of the runtime
counter will be assigned to that variable. It is possible
to check on the counter variable directly, however, in
that case the result would be the integral of the distri-
bution function from Lf to infinity.

b) If the interest is to check the probability whether
the desired property becomes true at all, the calcula-
tion should not be terminated by the incidence of the
property itself. This task can be achieved only by
checking for a significant time period, namely the
one within the event can take place once and will not
take place for a second time, as the probability check
can only determine whether something occurred or
not. As elucidated above, it is possible, to test on the
2nd, 3rd … occurrence or implement a counter inside
the model; but if testing on the occurrence of an
event at all, there is no distinguishing whether it oc-
curred once ore several times. To solve this problem
it is important to cover all possible initial states in the
first cycle (cf. subsection 2.5) and terminate the
automaton after finishing this one cycle.

The PRISM code of the system model itself is build
as follows:
[Pr] conditions assignments;

[Pr] conditions p1:assignments + p2:assignments + … ;

[Pr] is the synchronization signal mentioned before.
If it is omitted, the determinism of the sequence is
destroyed. Conditions are a predicate formulation
composed of one or more transition conditions ci (or
their negated partners) coupled by binary operators.
Assignments are value assignments to one or more
variables, which can be functions of the variables
values valid just before the transition got active. Fi-
nally, p1, p2 … are the probabilities used in the PTA.

2.5. Initial State

One of the most important differences between simu-
lation and model checking is that model checking
will for sure reach all possible states, while in simu-
lation even after a long period of time this might not
be the case. In probabilistic model checking the
properties are weighted by a value indicating the

probability of their incidence. While simulation
might converge to the right numbers for really long
simulation periods this should be avoided in PMC
(for reasons of state space on the one and the attitude
of geometric progressions on the other hand). There-
fore, it is important not to distort the results by trav-
ersing some paths more often than others, i.e. each
possible path must be depicted once and only once. It
follows, that the initial states must be chosen to defi-
nitely cover all possible paths.

The right assignment of the initial states is difficult,
especially as they might occur with different prob-
abilities. If there are at least two processes (modules),
which do not cycle using the same cycle time, there
will be a large number of possible drift times, espe-
cially, if they are not started in parallel (synchro-
nized). In the best case, there are only two drifting
modules and all possible drift times will occur in
with the same probability. In this case, the initial
condition can be found easily by pre-adapting an
“equally randomized initial state” cycle just in front
of the first time step in one of the two modules. This
is shown in Fig. 6. In PRISM this can be coded as
follows:
[P] !pre&var<varMax 1/(varMax-var):(pre=true) + (var-
varMax-1)/(var-varMax):(var’=var+1);

[P] pre&(!pre2|!pre3|…|!pren) true;

In this code, [P] is the sync-operator, pre is the bi-
nary variable, to detect whether the initial process
has been finished or not. !pre is the negation of pre.
pre2… pren are the detection variables of synchro-
nized modules, as the automaton would deadlock,
without this command (cf. equation (3)).

var=var+1 t pre=true(varMax – var)
1

(varMax – var)
varMax – var -- 1

pre=false

Fig. 6. Equally randomized initial state.

Note: This could be done in a single step also. How-
ever the code has to be rewritten then for every value
of varMax while using the automaton above varMax
can be used as free parameter.

3. CASE STUDY

To illustrate the approach a case study is presented.
The structure of the considered system is given in
Fig. 7. The model comprises a PLC, which represents
the controller and has a cycle time of 65 time steps
(ts). A cycle is made of the following steps: read in
all inputs, execute the PLC-code and write out the
outputs. While the outputs – in this example – are
written out directly, the inputs are read from a
TCP/IP based IO-card. This IO-card checks the digi-
tal In- and Output module every 40 time steps. This
inquiry is passed over the network, represented by
the Switch (Sw). From there it is passed to the IO-
Module (IO), which reads the current data from the
sensor and passes the information back through the
network. The property to be investigated is the delay
between an input signal change and a corresponding
output (signal of Type 1 according to Section 2.3).

Greifeneder, J.; Frey, G.: Dependability analysis of networked automation systems by probabilistic delay time analysis. Proceedings of the 12th IFAC Symposium on Information Control
Problems in Manufacturing (incom 2006), St. Etienne, France, Vol. 1, pp. 269-274, May 2006.

Delay: 1-5 time step(s)
(per direction)

PLC-
IO

net-
work

IO Sensor

failurefailure

cyclic
requests

2 time steps (total)

cylce:
40 time steps (ts)

Inputs

Ex
ec

ut
io

n

Outputs

PLCPLC

Cycle:
65 time steps (ts)

read

Delay=?

Fig. 7. Setup of the case study.

Each packet needs some time to pass through the
network. In this case study a uniformly distributed
time is assumed, ranging from one to SwMax time
steps. To read a sensor value two time steps are re-
quired. While this seems to be a deterministic prob-
lem, its character is of probabilistic nature as the two
cycles (PLC and PLC-IO) are not synchronized. The
resulting displacement is assumed to be uniformly
distributed and therefore initialized using the algo-
rithm introduced in Fig. 6.

3.1. Detailed models

Fig. 8 shows the automaton of the sensor module in
more detail. In the first time step, the value of the
sensor changes from 0 to 1. Beginning from this, the
delay-timer runs, what means, that the variable
Scounter becomes incremented, until either the de-
sired output got activated (END=true, cf. Fig. 10) or
the maximal variables value (MaxScount) is reached.
For reasons of readability the END, !END, MSt and
!MSt conditions as well as the corresponding termi-
nation state are not drawn in the automata shown in
Fig. 9 to Fig. 12.

initial
state

t Svalue=1
Inc(Scounter)

MSt=truet END ∨ Scounter=MaxScount t

t ! END ∧ Scounter<MaxScount

Fig. 8. Automaton for the sensor.

The automaton for the sensor-IO is shown in Fig. 9.
The automaton stays in the initial state until a request
from the network is received. In this case (and if
Svalue=1) the two time steps of “sensor reading” are
triggered. Then the value IOa is set to one for one
time step and the automaton returns to its first state.

read

! (SwP=1 & SensorV=1)

IOa=0

t

t SwP=1 &
SensorV=1

IOa=1t t

Fig. 9. Automaton for the sensor-IO.

The PLC model consists of two modules: The
PLCtimer and the PLC-action scheme. Note: In more
complicated examples there is a third module called
successor needed to handle a memory function. The
PLC timer – as well as the PLC-IO – contains an
equal distribution part (as discussed in Fig. 6) and a
ring counter. The ring counter is used to produce a
sync-signal all CountMax time steps. The PLC-

action-timer scheme is shown in Fig. 10, where the
ring counter is included (Pct). At Pct=0 (the end of
the cycle) it writes out its outputs: if the signal got
read, the automaton transits to its termination state
(top mid of the figure), otherwise, the cycle is started
again. At Pct=1 (the start of the cycle) the inputs are
read. If SwP=1 (see network, Fig. 12), the variable
Success becomes 1, otherwise it remains 0. In each
case, Pct becomes incremented. Now, the automaton
counts up until Pct = MPct-1 and goes back to the
first state (Pct=0).

Inc(Pct)

t

Pct< MPct-1
Su

cce
ss=

1

Signaltime= 0
Pct=0

t

t Success=0

Sw
P=3

Pct=1

t

t ! SwP=3

Success= 1
Pct=2

Signaltime
=

Scounter

t
END=true

t

t

t

Pct< MPct-1
Fig. 10. Automaton for the PLC action-timer.

Finally, there is an automaton for the network. It con-
sists of two modules: the network failure (Fig. 11)
and the network transport (Fig. 12). In this example
the assumption is made, that the packages from up
and down-link will never arrive at the same time –
what indeed is not possible, as the IO needs two time
steps to answer a request which is sent every 40 time
steps only and it is assumed that there is no other
traffic on the network.

Down:=0
Downtime:=0 t

Downtime < DtMax

Inc(Downtime)

t

DownCount=MaxDowns

DownCount < MaxDowns pDown

1-pDown

Down:=1
Inc(DownCount)
Inc(Downtime)

t

t

Downtime = DtMax
Fig. 11. Automaton for the network failure.

In the case of a network failure (Down=1) the net-
work loses all inside information (state at the bottom
left of Fig. 12). It stays idle (top left) until another
failure occurs or a package arrives (count=0 → PLC-
IO sends package, IOa=1 → IO sends package).

The two states in the middle of Fig. 12 represent the
case of a package being in the network (the network
needs 1 to SwMax time steps to carry a package). The
probability pNW is given as:

 1
NW

SwMax NTp
SwMax NT

− −
=

−
 (4)

t

t

Inc (NT)

(count>0 ∨ IOa=1)&Down=0

SwP=0
NT=0

t

t count=0
&Down=0

SwP=1
NT=0t Down=0

Inc(NT)

t IOa=1
&Down=0

SwP=3
NT=0

Down=0

t

Down=0

t

Down=1

D
ow

n=
1

Downtime<DtMax

t

SwP=0
NT=0

t

D
ow

n=
1

tD
ow

nt
im

e=
D

tM
ax

1
–

p N
W

pNW
pNW

1 – pNW

pNW

1
–

p N
W

t Down=0

1 – pNW

pNW

t Down=1

Fig. 12. Automaton for the network.

After a package got delivered to the I/O (SwP=1), the
network returns to its idle mode. If it got delivered to
the PLC-IO (SwP=3), the network ends up in a self
loop, as the terminal condition will be reached within
some time steps for sure.

Greifeneder, J.; Frey, G.: Dependability analysis of networked automation systems by probabilistic delay time analysis. Proceedings of the 12th IFAC Symposium on Information Control
Problems in Manufacturing (incom 2006), St. Etienne, France, Vol. 1, pp. 269-274, May 2006.

3.2. Results

The results of the experiment (done using PRISM)
and the measurements at a real plant are compared in
Fig. 13. These measurements were done by the
LURPA team at the ENS, Cachan (Poulard, 2003).
The bars show the measured values (relative fre-
quency), the black line the probabilistic model check-
ing results (probabilities). The comparison justifies
the use of the assumption of an initially uniformly
distributed state space as well as the model itself.

Fig. 13. Time between occurrence and reaction.

In the second experiment, SwMax is set to 5 and
therefore a packet can take 1, 2, 3, 4 or 5 ts to pass
the network. This is shown in Fig. 14. The dashed
lines show the case of SwMax=1, the solid lines
SwMax=5. The delay increases as expected. Note:
The sampling rate used in Fig. 14 was 1 ts, while in
Fig. 13 an interval of 3 ts was used and therefore the
values got 3 times larger than in Fig. 14. The prob-
ability p=1,538% at time 125 means that the prob-
ability of a signal to be delayed by 125 time steps is
1,538%. By building the sum, one can state that the
probability of a signal to be delayed more than 160
time steps is 3.00% in the case of SwMax=1 and
5.54% in the case of SwMax=5.

0

0,5

1

1,5

60 70 80 90 100 110 120 130 140 150 160 170 180 time
ms

% Probability / %

Fig. 14. Delay time without network failure.

In the third experiment, the network is assumed to
fail. For this an expected MTBF of 1000 time steps is
assumed. After a failure, the network needs 51 time
steps to recover. The controller holds a measured
value unchanged unless it receives another value.
Therefore, a failure in the network or the sensor has
no consequences if the measured value does not
change during the respective downtime. Fig. 15
shows the consequence (logarithmic scale!): dotted
lines without network failures, solid lines including
network failures. In the first 165 steps, there is not
much of a difference: The values do vary about
0.37‰. However, there are several delay times which
are higher than the maximum of 172 time steps ob-

served before. Note: For reasons of calculation time
the maximum number of network failures was set to
four. In this setting, the probability of a signal to be
delayed more than 160 time steps is 4.84%
(SwMax=1).

0,00001

0,0001

0,001

0,01

0 50 100 150 200 250
time

ms

10-3

10-2

10-4

10-5

probability

Fig. 15. Delay time with network failures.

4. CONCLUSIONS AND OUTLOOK

Analyzing the consequences of component failures in
networked automation systems it is important to take
the nature of the exchanged signals into account. Fur-
thermore, using probabilistic model checking, the
properties to be checked directly influence the model.
A strict separation leads to prohibitive state spaces
and verification times. Taking this into account the
probability of a critical failure in a systems operation
can be determined in an exact way using the pre-
sented approach. The next aim for the presented
work is to work modeling guidelines with the goal of
an automated (computer aided) design process.

REFERENCES

Alur, R., C. Courcoubetis and D. Dill (1999) Model-

checking for probabilistic real-time systems, in
ICALP’91, LNCS, vol 510, pp. 1 – 100.

Bérard, B., M. Bidiot, A. Finkel, F. Laroussinie, A.
Petit, L. Petrucci and Ph. Schnoebelen (2001).
Systems and Software Verification, Model-
Checking Techniques and Tools. Springer.

Greifeneder, J. and G. Frey (2005). Probabilistic De-
lay Time Analysis in Networked Automation
Systems. In: Proc. of the 10th IEEE ETFA 2005,
Catania, Italy, Vol. 1, pp. 1065-1068.

Hansson, H. and B. Jonsson (1999). A logic for rea-
soning about time and reliability. In: Formal As-
pects of Computing, 6, no. 4, pp. 512-535.

Henzinger, T., X. Nicollin, J. Sifakis, and S. Yovine
(1992). What good are digital clocks? In: Proc.
ICALP'92, LNCS, vol. 623, pp. 545–558

Kwiatkowska M., G. Norman and D. Parker (2002).
PRISM: Probabilistic symbolic model checker.
In: Proc. TOOLS’02, LNCS 2324, pp. 200-–204.

Kwiatkowska M., G. Norman, and D. Parker (2004).
Modelling and Verification of Probabilistic Sys-
tems. In: Mathematical Techniques for Analyzing
Concurrent and Probabilistic Systems. CRM
Monograph Series, vol 23. AMS, pp. 94 – 215.

Poulard, G. (2003). Modeling and simulation of a
control architecture over Ethernet with TCP/IP
protocol, Mémoire de DEA, ENS Cachan (F).

PRISM-Website:
http://www.cs.bham.ac.uk/~dxp/prism

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

